统计学14——指数

 

目录

知识结构 ​编辑

内容精读

1.基本概念 

2.总指数编制方法 

2.1简单指数

2.2加权指数

3.指数体系

3.1总量指数体系分析

3.2平均数变动因素分解

4.几种典型的指数

5.综合评价指数

名词解释

结语


 知识结构 

内容精读

1.基本概念 

指数又称统计指数,是分析社会经济现象数量变化的一种重要统计方法。是测定多想内容数量综合变动的相对数,这也就包含了指数的两个要点,一是指数的实质是测定多项内容;二是其变现形式为动态相对数。

从不同角度出发可以将指数分为这几类:

  • 按照考察对象的范围不同,分为个体指数总指数
    个体指数反映总体中个别现象会个别项目数量变动的相对数。
    总指数是综合反映多种项目数量变动的相对数。
  • 按照所反映指标的性质不同,可分为数量指数质量指数
    很显然数量指数就是反映数量指标变动的相对数,质量指数就是反映品质指标变动的相对数。
  • 按照计算形式不同,可分为简单指数加权指数
    简单指数把计入指数的各个项目的重要性视为相同。
    加权指数则是对不同项目按照其重要性有着不同权重。

2.总指数编制方法 

 2.1简单指数

(1)简单综合指数 

这个指数就是将报告期的指标综合与机器的指标综合相对比,特点是先综合后对比。

$$I_{p}=\frac{\sum{p_{1}}} {\sum{p_{0}}}$$

$$I_{q}=\frac{\sum{q_{1}}} {\sum{q_{0}}}$$

其中各符号解释如下:

p质量指标q数量指标
$i_{p}$质量指标指数$i_{q}$数量指标指数
下标1报告期下标0基期

 (2)简单平均指数

此方法的特点是先对比后综合。

$$I_{p}=\frac{\sum{\frac{p_1} {p_0}}} {n}$$

$$I_{q}=\frac{\sum{\frac{q_1} {q_0}}} {n}$$

对于简单指数无论是综合指数还是平均指数都有一定的缺陷,没有考虑到权数的影响,得到的结果难以反映实际的情况。

2.2加权指数

(1)加权综合指数

因为在实际中,把每一个指标直接加总是没有现实意义的,因此需要引入媒介因素,同时要固定媒介单纯反映被研究指标的变动情况。因此针对媒介固定的时期诞生了著名的拉氏指数和帕氏指数。

  • 拉氏指数
    在计算时将作为权数的同度量因素固定在基期。
    拉氏数量指标指数$$I_{q}=\frac{\sum{q_{1}p_{0}} } {\sum{q_{0}p_{0}} }$$
    拉氏质量指标指数$$I_{p}=\frac{\sum{q_{0}p_{1}} } {\sum{q_{0}p_{0}} }$$
  • 帕氏指数
    在计算时将作为权数的同度量因素固定在报告期。
    帕氏数量指标指数$$I_{q}=\frac{\sum{q_{1}p_{1}} } {\sum{q_{0}p_{1}} }$$
    帕氏质量指标指数$$I_{p}=\frac{\sum{q_{1}p_{1}} } {\sum{q_{1}p_{0}} }$$

 ps:对于加权综合指数有着这样两个结论:

  • 在加权综合指数中,媒介(也称同度量因素)同时起着权数的作用。
  • 权数时期的选择主要取决于编制指数的目的,取决于用指数要说明的问题。

(2)加权平均指数

 该指数时以个体指数为基础,通过对个体指数进行加权平均来编制的指数。

$$A_{p}=\frac{\sum{\frac{p_1} {p_0}qp } } {\sum{qp}}$$

$$A_{q}=\frac{\sum{\frac{q_1} {q_0}qp } } {\sum{qp}}$$

$$H_{p}=\frac {\sum{qp}}{\sum{\frac{p_0} {p_1}qp } }$$

$$H_{q}=\frac {\sum{qp}}{\sum{\frac{q_0} {q_1}qp } }$$

这里A,H只是表示指数计算方式的不同。核心仍然在于权数qp,因为权数可以取不同时期,因此用基期就跟拉氏指数相同,用报告期就跟帕氏指数相同。

当然这种相同只是形式上的相同,本质上的区别表现在资料的是否全面。如果是全面资料,就采用加权综合指数,如果是样本资料,就采用加权平均指数。

在加权平均指数中,权数的本质是:

基期加权:$$\frac{q_{0}p_{0}} {\sum{q_{0}p_{0}}}$$

报告期加权:$$\frac{q_{1}p_{1}} {\sum{q_{1}p_{1}}}$$

当权数相对稳定是,可以采用固定权数:

$$I=\frac{\sum{iW}} {\sum{W}}$$

其中i是个体指数或类指数,W为权数。销售价格指数和零售价格指数都是采取这种方式编制。

3.指数体系

指数不仅可以反映社会经济现象的数量变动,还能借助几个指数组成的体系,对社会经济现象之间的相互联系做更深入的分析。

3.1总量指数体系分析

借助指数体系进行分析首先要进行因素分解,下面是一些总量指数的分解:

  • 销售额指数=销售量指数×销售价格指数
  • 总产值指数=产量指数×产品价格指数
  • 总成本指数=产量指数×单位产品成本指数
  • 销售利润指数=销售量指数×销售价格指数×销售利润率指数

对于两因素分析,在加权综合体系中,为使总量指数等于个因素指数的乘积,两个因素指数中通常一个为数量指数,另一个为质量指数,而且各因素指数中权数必须是不同时期的(即一个用基期加权另一个就要用报告期加权)。

最常用的便是拉氏指数(数量)和帕氏指数(质量)形成的指数体系:

$$\frac{\sum{q_{1}p_{1}}} {\sum{p_{0}q_{0}}}=\frac{\sum{q_{1}p_{0}}} {\sum{q_{0}p_{0}}}×\frac{\sum{q_{1}p_{1}}}{\sum{q_{1}p_{0}}}$$

因素影响差额之间关系为

$$\sum{q_{1}p_{1}}-\sum{q_{0}p_{0}}=(\sum{q_{1}p_{0}}-\sum{q_{0}p_{0}})+(\sum{q_{1}p_{1}}-\sum{q_{1}p_{0}})$$

其中$\sum{q_{1}p_{1}}$为报告期总量指标,$\sum{q_{0}p_{0}}$为基期总量指标。

 3.2平均数变动因素分解

分组情况下,加权算术平均数的计算公式为:

$$\bar{x}=\frac{\sum{xf}} {\sum{f}}=\sum{(x\frac{f}{\sum{f}})}$$

可以看出平均数受两个因素影响,一个是各组的变量水平,一个是各组的结构。 

 总平均水平指数=组水平变动指数×结构变动指数

$$I_{xf}=I_{x}×I_{f}$$

$$\frac{\bar{x}_{1}}{\bar{x}_{0}}=\frac{\bar{x}_{1}}{\bar{x}_{n}}×\frac{\bar{x}_{n}}{\bar{x}_{0}}$$

总平均水平变动额=各组水平变动影响额+机构变动影响额 

$$\bar{x}_{1}-\bar{x}_{0}=(\bar{x}_{n}-\bar{x}_{0})+(\bar{x}_{1}-\bar{x}_{n})$$ 

4.几种典型的指数

(1)居民消费价格指数

 是度量居民消费品和服务项目价格水平随时间变动的相对数,反映居民家庭购买的消费品和服务价格水平的变动情况。计算方式在前面固定权数的加权指数中已进行介绍。

(2)股票价格指数

 $$今日股价指数=\frac{今日市价总值}{基日市价总值}*100$$

(3)消费者满意度指数

消费者满意度是一个经济心理学的概念、要想衡量必须建立模型,将消费者满意度与一些相关变量联系起来。

5.综合评价指数

在统计中综合评价是针对研究的对象,建立一个进行测评的指标体系,利用一定的方法或模型,对搜集的资料进行分析,对被评价的事物作出量化的总体判断。

而综合评价指数是将评价结果数量化的一种技术处理。构建综合评价指数一般包括下面几步:

(1)建立综合评价指标体系

这一步主要是对所研究问题进行定性分析,选取合适的指标。

(2)评价指标的无量钢化处理

无量纲化也就是我们常说的标准化,为了排除量纲对分析带来的影响。这里主要介绍三种方法:

  • 统计标准化
    $$z_{i}=\frac{x_{i}-\bar{x}}{s}$$
  • 相对标准化
    $$z_{i}=\frac{x_{i}}{x_{s}}$$
    $x_{s}$为对比标准,通常选择最优值或平均值。
  • 功效系数法
    $$z_{i}=\frac{x_{i}-min(x_{i})} {max(x_{i})-min(x_{i})}$$
     

(3)确定各指标权重

这是一个重要且容易引起争议的工作,因为不同的人对不同的指标的看法总是不同的。这也就将权重的计算方法分为了两种一是主观确定,这种方法主要依靠专家经验进行打分等方式进行,权重的可靠性依赖于选择专家对某个指标的看法;二是客观计算,如熵权法等根据指标值通过一系列计算得到的权重值,这种方法避免了主观因素在造成的影响,但有时难以反映评价的导向性。

(4)计算综合评价指数

 综合评价指数一般是将标准化后的指标数据与相应权重结合进行计算:

$$I=\frac{\sum_{i=1}^{n}z_{i}w_{i}}{\sum_{i=1}^{n}w_{i}}$$

名词解释

指数:指数是测定多项内容数量综合变动的动态相对数。这个概念包含两个要点:①指数的实质是测定多项内容,例如零售价格指数反映的是零售市场几百万种商品价格变化的整体状况。②指数的表现形式为动态相对数。 

指数体系:指数体系是由总量指数及其若干个因素指数构成的数量关系式。反映了总量指标与因素指标之间的相互关系。它一般保持两个对等关系,一是各影响因素指数的连乘积等于总变动指数:二是各因素对总额变动影响差额的总和等于实际发生的总差额。

结语

对于统计学(贾书)的理论学习就到此结束了,当然对于统计的学习来说这还是远远不够的,还需要大量的实践练习。在这个专栏中的内容也必然存在许多不足,会在不断地实践逐步完善内容,希望在最后呈现出一个较为丰富的笔记。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值