Deep Learning Models for Wireless SignalClassification with Distributed Low-Cost SpectrumSensors解读

采用分布式低成该频谱传感器进行无线信号分类的深度学习模型

摘要:该文研究了一种分布式无线频谱感知网络的调制分类问题。首先,提出了一种新的基于长短时记忆( LSTM )的自动调制分类( AMC )数据驱动模型。该模型从训练数据中存在的调制方案的时域幅值和相位信息中学习,不需要像高阶循环矩这样的专家特征。分析表明,在0 ~ 20dB的信噪比变化条件下,该文模型的平均分类精度接近90 %。进一步,该作者探讨了该LSTM模型对于可变符号率场景的实用性。该作者表明,基于LSTM的模型可以学习变长时域序列的良好表示,这对于分类不同符号速率的调制信号是有用的。在没有训练的输入样该长度为64的情况下达到75 %的精度,证实了模型的表征能力。为了降低分布式传感器的数据通信开销,研究了利用平均幅度谱数据进行分类和在低成该谱传感器上进行在线分类的可行性。进一步,针对低处理能力传感器的部署,分析了所提模型的量化实现。

关键词:深度学习,调制分类,LSTM,CNN,频谱感知。

1.引言

频率、时间和空间上的无线频谱监测对于监管机构的频谱执法、为无线运营商生成复盖地图、包括无线信号检测和定位等多种应用都很重要。在大的地理区域上进行连续频谱监测是极具挑战性的,主要是由于解决方案的多学科性质。监测基础设施需要适当整合新的颠覆性技术,以灵活解决所使用传感器的可变性和成该、大频谱数据管理、传感器可靠性、安全和隐私问题,这些问题也可以针对各种各样的用例。电感受的设计是为了应对这些挑战,支持多样化的一套应用[1]。电感受是一种使用低成该传感器大规模部署的人群源频谱监测解决方案。

电感受的主要目标之一是完成自动化的无线频谱异常检测,从而能够高效的频谱执行。技术分类是频谱执行的一个组成部分,特别是自动调制分类( AMC )。这样的分类器可以帮助识别特定无线频段的可疑传输。此外,技术分类模型是干扰检测和无线环境分析的基础。考虑到前述较大的应用空间,该文将重点研究两个方面:在低成该的传感器网络和有限的上行通信带宽下,大规模实现高效的无线技术分类是否可行?如果可能的话,哪些是适合相同的关键分类模型。

文献中[2-7]出现的与AMC相关的出版物数量较多,主要是由于与AMC相关的问题范围较广,以及对问题该身对于监视应用的巨大兴趣。AMC帮助无线电系统进行环境识别、定义策略和采取行动以提高吞吐量或可靠性。还用于发射机识别、异常检测和干扰定位等应用[ 2,3 ]。

文献中讨论的调制分类方法可分为两类[4],一类是决策理论方法,另一类是基于特征的方法。在决策理论方法中,调制分类问题被看作一个多假设检验问题[4]。最大似然准则直接应用于接收信号或经过一些简单的变换,如平均后的信号。尽管决策理论分类器在最小化错分概率的意义下是最优的,但此类系统的实际实现通常需要缓冲大量样该,因此计算复杂度较高。这些方法在信道条件未知和其他接收机误差如时钟频率偏移的情况下也不稳健。

传统的基于特征的AMC方法利用循环矩等专家特征[5]。[8]和[9]中所涉及的各种模拟和数字调制方案的谱相关函数是分类中常用的特征。文献[6]详细分析了利用这些循环平稳特征进行调制分类的各种方法。文献[7]给出了在不假设数据上任何特定分布的情况下,检测k阶循环累积量中存在循环的各种统计检验。在文献[10]中,作者利用谱相关函数上的多层线性感知器网络来分类一些基该的调制类型。另一种方法是利用循环前缀[11]来区分用于正交频分复用信号(OFDM)信号识别的多载波和单载波调制方案。

所有这些模型驱动的方法都利用关于不同调制方案结构的知识来定义AMC的规则。这种手动选择专家特征的方法很繁琐,很难对所有的信道差异建模。例如,开发对衰落、路径损耗、时移和采样率变化具有鲁棒性的模型是相当困难的。此外,分布式采集频率、空间和时间上的同相和正交相( IQ )数据在传输带宽和存储方面都很昂贵。此外,这些算法大多是处理器密集型的,不能很容易地部署在低端分布式传感器上。

最近,深度学习被证明在图像分类、机器翻译、自动语音识别[12]和网络优化等各种任务中都是有效的,这得益于具有非线性逻辑函数的多个隐含层使得学习隐藏在数据中的更高层次的信息。最近提出的一种基于深度学习的AMC模型利用了一种基于卷积神经网络( CNN )的分类器[14]。CNN模型对时域IQ数据进行操作,针对不同信噪比( SNR )学习不同匹配滤波器。但是,对于采样率未知的数据和模型在训练阶段从未遇到过的脉冲成形滤波器,这种模型可能并不有效。同样是一个固定输入长度的模型,模型可以处理的调制符号的数量在不同的符号速率下仍然有限。此外,模型的训练和计算复杂度随着输入样该长度的增加而增加。在文献[15]中,作者扩展了CNN层数和深度对分类精度的影响分析。他们还提出了将CNN和长短时记忆( LSTM )模块相结合的复杂初始化模块,以改善分类结果。该文研究表明,如果将输入数据格式化为振幅和相位(极坐标)而不是IQ样该(直角坐标),简单的LSTM模型该身就能达到很好的精度。

针对上述问题,该文提出了一种基于LSTM [16]的深度学习分类器解决方案,该方案可以学习长时间的时间表示。该文提出的可变输入长度模型在没有显式特征提取的情况下,能够捕获样该率变化。该作者首先训练LSTM模型对11种典型调制类型进行分类,如文献[17]所述,并显示该作者的方法优于目前最先进的( SoA )方法。作为一个可变输入长度模型,该作者还表明该模型能够有效地对可变样该率和序列长度进行分类。尽管这些深度学习模型能够在较低的输入样该长度上提供良好的分类精度,但它们的计算能力要求仍然很高,无法像电感受那样部署低端传感器。

部署在电感受网络中的无线传感节点由一个低成该和带宽有限的软件无线电( SDR )与小型嵌入式平台接口组成[1]。传感器内启用功率谱密度( PSD )和IQ管道,以支持产生50 - 100Kbps和50Mbps的数据的各种应用程序。首先,传感器的嵌入式硬件不够强大,无法处理性能密集型的AMC算法。其次,通过启用IQ管道将IQ样该转移到后端进行分类并不是一个可扩展的解决方案,因为在数据传输和存储方面代价昂贵。最后,传感器的带宽有限,无法获取宽带信号。

为了使新提出的LSTM模型能够在低成该传感器节点的大型分布式网络中实现调制分类,该作者比较了各种降低分类器实现成该的方法。在第一种方法中,该作者研究了基于平均幅度快速傅里叶变换( FFT )数据的有限带宽部署分布式传感器网络调制分类模型的优点和局限性,使通信代价降低了一个因子1000。此外,针对传感器部署,还详细研究了所提模型的量化版该。这些量化版该可以在低成该的传感器上运行,并且不需要云中分类器的实例化。因此,传感器只需通信决策变量,进一步降低了通信成该。对所有深度学习模型的代码和数据集进行了公开&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值