💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
概率神经网络(Probability Neural Network,简称PNN)是一种前馈神经网络,其工作原理是基于统计学中的核函数估计和贝叶斯决策理论。PNN在处理分类问题时效率高,特别适用于那些要求实时响应的应用。这种网络在模式识别领域尤其有效,包括变压器故障诊断这类复杂的分类问题。
在使用PNN进行变压器故障诊断时,通常采取以下步骤:
1. 数据收集与预处理
首先需要收集变压器运行中的各类数据,这可能包括温度、压力、电流、电压以及油中异物含量等。然后对数据执行预处理步骤,例如归一化、去噪,以便让数据更适合用于神经网络训练。
2. 特征选择
在大量的监测数据中选择对变压器状态有较高判别能力的特征是重要的一步。这可以通过各种特征选择方法来完成,比如使用主成分分析(PCA)来减少数据维度并突出关键特征。
3. 划分数据集
将数据集划分为训练集、验证集和测试集。训练集用于网络训练,验证集用于模型选择,测试集用于验证模型的泛化能力。
4. 网络设计
设计概率神经网络的结构,包括输入层、模式层、求和层和输出层。输入层的神经元数量对应于选定特征的数量,输出层的神经元数量则对应于分类任务的类别数。
5. 网络训练
使用训练集数据训练PNN。由于PNN通常只需要一次通过训练数据来确定网络的权重,因此训练过程相对较快。
6. 性能评估
使用验证集和测试集数据来评估PNN模型的分类性能。可以采用准确率、召回率和F1分数等评估指标。
7. 故障诊断
一旦网络经过训练并且表现良好,它就可以用于实时的变压器故障诊断。输入实时收集的监测数据到网络,PNN会根据其学习到的知识预测故障类型。
概率神经网络在变压器故障诊断中的应用可以大大提高故障检测的准确性和速度,有助于防止可能的故障扩散,确保电网的稳定运行。在实际应用中,还需要考虑到数据质量、异常值处理、模型的实时更新及维护等因素,以保持系统的高效和可靠。
📚2 运行结果
部分代码:
%% 使用newpnn函数建立PNN SPREAD选取为1.5
Spread=1.5;
net=newpnn(p_train,t_train,Spread)
%% 训练数据回代 查看网络的分类效果
% Sim函数进行网络预测
Y=sim(net,p_train);
% 将网络输出向量转换为指针
Yc=vec2ind(Y);
%% 通过作图 观察网络对训练数据分类效果
figure(1)
subplot(1,2,1)
stem(1:length(Yc),Yc,'bo')
hold on
stem(1:length(Yc),t_train_temp,'r*')
title('PNN 网络训练后的效果')
xlabel('样本编号')
ylabel('分类结果')
set(gca,'Ytick',[1:5])
subplot(1,2,2)
H=Yc-t_train_temp;
stem(H)
title('PNN 网络训练后的误差图')
xlabel('样本编号')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]曹永刚,周玲,丁晓群,等.基于概率神经网络的电力变压器故障诊断[J].继电器, 2006(003):034.
[2]安源,张智恒.基于PNN的电力变压器故障诊断[J].电气应用, 2020, 39(11):6.
[3]韩世榕,邹红波.基于PNN的变压器故障诊断研究[J].通信电源技术, 2016(4):3.DOI:10.3969/j.issn.1009-3664.2016.04.024.
[4]银涛.基于概率神经网络的变压器故障诊断的研究[J].电气应用, 2006, 25(10):4.DOI:10.3969/j.issn.1672-9560.2006.10.019.