💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于CNN-RVM的风电功率预测研究是一个结合了卷积神经网络(CNN)和相关向量机(RVM)优势的研究领域,旨在提高风电功率预测的准确性和效率。以下是对该研究的详细探讨:
一、研究背景与意义
风能作为一种清洁、可再生的能源,在全球能源结构中的地位日益重要。然而,风电的间歇性和随机性给电网调度带来了巨大挑战。因此,准确预测风电功率对于电力系统的稳定运行、能源调度和市场交易具有重要意义。CNN和RVM作为机器学习领域的先进算法,分别具有自动提取特征和高效回归预测的能力,它们的结合为风电功率预测提供了新的思路和方法。
二、CNN与RVM简介
- CNN(卷积神经网络):
- CNN是一种深度学习算法,特别擅长处理具有空间结构的数据,如图像。它通过卷积层、池化层和全连接层等结构,自动从原始数据中提取特征,并将其用于后续的预测任务。
- 在风电功率预测中,CNN可以自动从风速、风向、温度等气象数据中提取有用的特征,这些特征对于预测风电功率具有关键作用。
- RVM(相关向量机):
- RVM是一种基于贝叶斯框架的稀疏概率模型,它在支持向量机(SVM)的基础上进行了改进,具有更高效的参数估计和更强的泛化能力。
- RVM通过最大化边缘似然函数来求解模型参数,同时自动选择对预测结果有重要影响的相关向量,从而实现稀疏化。
三、基于CNN-RVM的风电功率预测步骤
- 数据收集与预处理:
- 收集风电场的历史功率数据和相关的气象数据(如风速、风向、温度等)。
- 对数据进行清洗和预处理,包括去除异常值、处理缺失值、数据标准化等步骤。
- 特征提取:
- 使用CNN从预处理后的数据中提取有用的特征。CNN的卷积层和池化层可以自动学习输入数据的空间结构,并将其转化为更具代表性的特征表示。
- 构建RVM模型:
- 基于提取的特征构建RVM模型。RVM模型通过最大化边缘似然函数来求解模型参数,并自动选择对预测结果有重要影响的相关向量。
- 模型训练与验证:
- 使用训练集数据对CNN-RVM模型进行训练。通过优化算法调整模型参数,使得预测结果更加接近实际值。
- 使用验证集数据对模型进行验证,评估模型的预测精度和泛化能力。
- 预测与结果分析:
- 使用训练好的CNN-RVM模型对未来一段时间内的风电功率进行预测。
- 对预测结果进行分析,比较实际值与预测值之间的差异,并探讨可能的原因和改进措施。
四、CNN-RVM在风电功率预测中的优势
- 自动特征提取:CNN能够自动从原始数据中提取有用的特征,无需人工设计特征工程,提高了预测模型的灵活性和准确性。
- 高效回归预测:RVM作为一种稀疏概率模型,具有高效的参数估计和强泛化能力,能够在保证预测精度的同时降低模型复杂度。
- 结合优势:CNN和RVM的结合充分利用了各自的优势,既能够自动提取特征又能够高效回归预测,从而提高了风电功率预测的准确性和效率。
五、结论与展望
基于CNN-RVM的风电功率预测研究为风电功率预测提供了新的思路和方法。未来研究可以进一步探索CNN和RVM的结合方式以及模型优化算法,以提高风电功率预测的准确性和稳定性。同时,随着机器学习技术的不断发展,将CNN-RVM与其他机器学习算法相结合构建混合预测模型也是一个值得研究的方向。
📚2 运行结果
部分代码:
% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74 0.8 0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]
%
% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87 0.15 712.77 684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】
%
% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72 0.87 0.08 742.81 751.3】
function res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
for i = 1:num_samples
h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
res{i,1}= h1;
h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
res{i,2} = h2;
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.
[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取