DeepSeek系列论文解读四之DeepSeek Prover V2

一、研究背景与目标

近年来,大语言模型(LLMs)在数学推理、问答和代码生成等领域展现了惊人的推理能力,特别是在自然语言条件下的“思维链”(Chain-of-Thought, CoT)推理。然而,将这类能力应用于形式化定理证明(如 Lean、Coq 等系统)仍面临巨大挑战:

  • 自然语言推理具有模糊性、跳步性、不严格;
  • 形式化系统则要求每一步证明都无歧义、可验证
  • LLMs 能否成为严谨数学证明助手,是一个关键科学问题。

本论文提出了 DeepSeek-Prover-V2,一个面向 Lean 4 的、具备递归子目标分解能力的大语言模型,通过强化学习与课程学习联合训练,在多个数学基准测试上达到当前最强性能。

二、技术方法详解

2.1 子目标分解策略(Subgoal Decomposition)

  • 借鉴人类证明策略:将复杂定理分解为一系列中间引理(子目标)
  • 使用 DeepSeek-V3 模型生成自然语言思维链,并将子目标形式化为 Lean 语句;
  • 每个子目标用 sorry 占位,由后续 7B 小模型解决;
  • 子目标之间具备依赖关系,可通过 have 链接组合为完整定理证明。

这种方式实现了复杂推理任务的结构化、模块化与并行化求解

2.2 冷启动数据构建(Bootstrapping Formal Reasoning)

  • 利用子目标成功率高的事实:先解子目标,再自动组合成完整定理;
  • 合并 DeepSeek-V3 提供的 CoT 推理与子目标证明,形成高质量训练样本;
  • 相比于以往直接采集自然语言→形式化对照,本方法反向建模:形式化先 → 自然语言补足,更适合 LLM 模拟人类推理。

2.3 双模型策略(CoT 与 non-CoT)

📗 Non-CoT 模型
  • 专注于 Lean 证明代码生成;
  • 无需中间解释步骤,执行速度快;
  • 适合大规模并发尝试,支持专家迭代数据采集(Expert Iteration)。
📘 CoT 模型
  • 展示自然语言推理路径 + Lean 形式化步骤;
  • 提高可解释性;
  • 在训练后期结合强化学习进行优化。

2.4 强化学习优化(RL with Structural Rewards)

  • 使用 Group Relative Policy Optimization (GRPO) 算法;
  • 奖励信号基于是否通过 Lean 验证;
  • 引入“结构一致性奖励”,鼓励模型保留关键中间步骤(如每个 have);
  • 实验证明对多步骤复杂定理效果显著。

2.5 课程学习策略(Curriculum Learning)

  • 通过已解决子目标构建“伪定理”(即中间命题);
  • 随着模型能力增强,逐步加入更复杂结构;
  • 类似人类学习路径,从简单引理到复杂定理逐步提升。

三、实验评估与结果

模型在多个主流和新提出的数据集上进行测试:

数据集模型/设置成绩说明
MiniF2F-test671B + CoT88.9% (Pass@8192)SOTA,竞赛级定理证明
MiniF2F-valid课程学习 + 子目标90.2%与最终模型相当,验证子目标分解有效性
ProofNet-test671B + CoT37.1% (Pass@1024)本科教材 Lean 证明集
PutnamBench671B + CoT49 / 658美国本科竞赛题集,覆盖多数学科
+ 7B non-CoT+13 题,共 62发现技能补偿,7B 模型表现出独特强项
AIME 2024-2025671B + CoT6 / 15高中顶尖数学竞赛题
DeepSeek-V38 / 15非正式推理结果,显示能力接近
CombiBench671B + CoT12 / 77组合数学 Lean 形式化
ProverBench325 题混合集(教材+AIME)多基准强势表现覆盖 9 类课程内容和竞赛场景

四、创新点总结

创新点贡献描述
冷启动推理数据生成方法形式化优先,反向配对非正式语言,构建更严谨的训练样本
子目标驱动的递归证明流程支持复杂定理分层解构,大幅提升模型效率与可扩展性
非 CoT + CoT 模型协同训练策略兼顾速度与解释性,适应多场景使用
结构奖励强化学习框架(GRPO)强化“多步逻辑链”保留,提升复杂任务稳定性
ProverBench 数据集首次引入教材与竞赛混合评测集,扩大了评估覆盖范围

五、未来工作展望

  • IMO(国际数学奥林匹克)级别的挑战进发;
  • 构建具备完整证明流程的 AlphaProof 级系统;
  • 探索更强的子目标推理规划能力与长期结构记忆机制;
  • 融合多模态(图形/自然语言/符号逻辑)以支持更广泛的数学活动。

📝 本文为构建类人类智能数学系统提供了切实路径:从推理分解、知识重组到代码级验证,每一步都向“具备数学能力的通用智能”迈出实质性一步。

### 清华大学 DeepSeek 项目研究成果 #### DeepSeek 的独特优势和发展历程 DeepSeek 是清华大学在人工智能和深度学习领域的一项重要成就,因其独特的搜索算法和强大的知识挖掘能力而备受瞩目[^1]。该项目不仅展示了卓越的技术性能,还在多个应用场景中证明了自己的价值。 #### 使用手册与版本迭代 为了帮助用户更好地掌握并利用这一先进工具,《DeepSeek使用教程手册》被正式发布,并经历了两个主要版本的更新。这些文档提供了详尽的操作指南和技术细节说明,有助于不同层次用户的快速上手和深入理解。 #### 扩展项目的贡献 除了核心产品外,团队还开发了一系列基于相同技术框架下的子项目,如 DeepSeek-ProverDeepSeek-Coder-v2DeepSeek-R1 等。这表明了该平台具有高度灵活性以及广泛的应用前景[^2]。 #### 性价比高的解决方案 值得注意的是,与其他同类方案相比,DeepSeek 不仅实现了功能上的突破,更重要的是通过优化成本结构达到了更高的效率水平。这种高性价比使得更多机构和个人可以享受到前沿科技带来的便利和服务改进机会[^3]。 ```python # 示例代码展示如何调用 DeepSeek API 进行简单查询操作 import requests def deepseek_query(query_string): url = "https://api.deepseek.tsinghua.edu.cn/search" headers = {"Content-Type": "application/json"} payload = {"query": query_string} response = requests.post(url, json=payload, headers=headers) return response.json() result = deepseek_query("人工智能发展趋势") print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值