【车辆异常检测】轨迹异常检测文献

       硕士在读,做的车辆异常检测相关方向,包括不限于轨迹异常检测,车联网,汽车CAN总线网络攻击异常检测等,偏好联邦学习来做。分享关于此方向的一些见解和分享。有人看的话可以更新此系列


前言

题目:AI-Empowered Trajectory Anomaly Detection for Intelligent Transportation Systems: A Hierarchical Federated Learning Approach
这篇文章是一篇2023年发表在T-ITS上面的论文,提出了一个基于分层联邦学习的轨迹异常检测架构,结合了人工智能与区块链技术,兼顾隐私保护与模型泛化能力。


提示:以下是本篇文章正文内容,下面案例可供参考

一、研究背景和motivation

轨迹异常检测在智能交通系统(ITS)中起着至关重要的作用。例如,实时发现交通事故、违法行为、拥堵路段等都依赖对轨迹的快速分析。但存在两个核心挑战:
 

轨迹异常检测在智能交通系统(ITS)中起着至关重要的作用。例如,实时发现交通事故、违法行为、拥堵路段等都依赖对轨迹的快速分析。但存在两个核心挑战:

  • 数据隐私问题:轨迹数据可能包含敏感信息,不能直接集中收集;

  • 模型泛化能力差:局部模型只适用于特定区域,难以推广到其他城市或场景。

为此,本文提出了一种分层联邦学习(Hierarchical Federated Learning, HFL)+区块链架构,在提升模型泛化能力的同时,保护了数据隐私。

二、系统模型

整套系统采用了三级结构:(分层的结构)

  • 参与节点(Clients):位于不同区域,采集本地轨迹数据,训练本地模型;

  • 区域聚合服务器(Area Server):对本区域的本地模型进行联邦聚合,生成区域模型;

  • 全局聚合服务器(Global Server):将多个区域模型再进行一次联邦聚合,得到全局轨迹异常检测模型

关键亮点在于:两级聚合策略 + 区块链+IPFS存证机制,让整个模型训练过程可追溯、防篡改、可信赖。(下面的两个图本人觉得画的着实不错)



三、所提框架方法

分层联邦学习机制

  • 区域内聚合(Intra-Area FL):每个区域内部通过 FedAvg 聚合本地模型,生成区域模型;

  • 区域间聚合(Inter-Area FL):将多个区域模型加权融合,构建全局模型;

为了提升泛化能力,作者设计了一个加权融合策略

融合时,区域模型的权重由与目标区域模型的欧氏距离决定,差异越小,权重越大,从而提升目标区域检测效果。

区块链保障可信训练

系统使用两类智能合约:

  • 区域模型上传合约(SCa)

  • 全局模型上传合约(SCg)

所有模型存入 IPFS(内容寻址分布式文件系统),其哈希值(CID)记录在区块链中,确保模型内容不可篡改、可溯源。


在FL的创新上其实不多,主要是一个分层+聚合的权重策略上。


四、实验设计
 

论文采用 NGSIM 真实交通数据集 + 合成6类异常轨迹(如急加速、长时间停滞、左右摆动等),在模拟的两区域场景中进行了验证。NGSIM是一个比较经典的数据集了,具体他这个异常轨迹是合成的还是说按照阈值分出来的我还没看懂。但是实验设计比较贴合真实场景。

模型结构:

  • LSTM 层:64单元

  • Dense 层:7个神经元输出(对应不同异常类型)

主要是一个监督学习的LSTM的分类问题,不过论文创新在于FL+区块链的框架,模型关系不大。
 

实验结果总结:

  • 准确率(Accuracy) 提升至 85.7%,优于 CNN-GPSTasST 和 CNN-VAE;

  • 泛化能力更强:在混合区域数据上全局模型表现优于任一区域模型;

  • 资源消耗可控:在四节点区块链部署中,CPU 和内存占用在可接受范围内。

这里的对比算法是两个比较代表性的工作也是针对于车辆轨迹异常检测的,但是并没有采用FL的方法。

参考文献:

Wang et al., "AI-Empowered Trajectory Anomaly Detection for Intelligent Transportation Systems: A Hierarchical Federated Learning Approach", IEEE T-ITS, 2023.


总结

在FL+车辆轨迹异常检测里面是一个比较新颖的工作,对我来说是比较有启发性的,也是本人在这个方向follow的第一篇论文。

<think>嗯,用户的问题是关于交通拥堵预测算法中如何去除重复数据或结果的数据处理方法。我需要先理解用户的具体需求。他们可能在进行交通数据处理时遇到了重复数据的问题,想要了解在预测模型中如何有效去重。 首先,我要回忆一下相关的引用内容。引用[1]提到项目数据来源与预处理,包括实时交通流量数据、历史数据、天气数据等,所以预处理步骤可能涉及去重。引用[2]讲的是卡口车牌数据的应用,比如路段流量、行程时间等指标,这些数据可能存在重复,例如同一车辆多次通过同一卡口。引用[4]提到异常检测算法,比如基于统计的方法或机器学习方法,可能和去重有关联。引用[5]中的Java大数据处理,提到了数据采集效率,去重可能也是其中的一部分。 接下来,我需要整理不同的去重方法。可能的方面包括数据采集阶段的设备去重,比如同一传感器多次上报;时间窗口聚合,比如将短时间内重复的数据合并;基于空间位置的去重,比如同一路段的数据;利用车牌识别,像引用[2]中的卡口数据,可以用车牌号去重;数据指纹技术,生成唯一标识;机器学习方法,如引用[4]中的异常检测来识别重复或异常数据;还有实时流处理中的去重技术,比如布隆过滤器。 然后要考虑用户可能的深层需求。他们可能不仅想知道技术方法,还想了解实际应用中的步骤或案例。比如引用[2]中的千岛湖镇案例,可以举例说明如何用卡口数据去重。此外,可能需要强调不同方法的结合使用,因为交通数据来源多样,单一方法可能不够。 还要注意引用相关文献来支持每个方法,比如在讲时间窗口聚合时引用[1]的数据预处理,讲车牌识别时引用[2],异常检测引用[4]等。确保每个步骤都有依据,并且回答结构清晰,分点列出,便于用户理解。 最后,生成的相关问题要围绕交通数据处理的其他方面,比如数据清洗、特征工程、异常处理等,这样用户如果有进一步的问题,可以继续提问。</think>在交通拥堵预测算法中,数据去重是数据预处理的核心环节,直接影响模型训练效果和预测精度。以下是结合交通数据特征的六种去重方法及具体实现逻辑: ### 一、基于数据来源的去重策略 1. **多源传感器校准去重** 针对同一路段不同设备(如地磁传感器、摄像头)采集的重复数据,采用时空匹配算法: $$ \text{匹配条件} = \begin{cases} |t_i - t_j| \leq \Delta t_{\text{threshold}} \\ \|p_i - p_j\| \leq D_{\text{threshold}} \end{cases} $$ 通过时间差$\Delta t$和空间距离$D$双重阈值判定重复数据[^1] 2. **时间窗口聚合优化** 对高频采集数据(如秒级卡口数据)采用滑动窗口处理: ```python def time_window_aggregation(data, window_size=5*60): # 5分钟窗口 return data.resample(f'{window_size}S', on='timestamp').agg({ 'speed': 'mean', 'volume': 'sum' }).drop_duplicates() ``` 该方法可消除设备异常高频上报导致的重复[^2] ### 二、基于车辆特征的去重技术 3. **车牌识别去重法** 利用卡口抓拍的车辆唯一标识构建时空轨迹链: ```sql SELECT DISTINCT plate_number, FIRST_VALUE(speed) OVER (PARTITION BY plate_number, road_segment ORDER BY timestamp) AS clean_speed FROM raw_traffic_data WHERE timestamp BETWEEN start_time AND end_time ``` 该技术可有效消除同一车辆多次过车产生的冗余数据[^2] 4. **轨迹相似度检测** 使用动态时间规整(DTW)算法检测相似轨迹: $$ DTW(X,Y) = \min_{\pi} \sqrt{\sum_{(i,j)\in\pi} (x_i - y_j)^2} $$ 当$DTW \leq \epsilon$时判定为重复轨迹,保留最新数据[^4] ### 三、数据流处理层面的去重 5. **实时流指纹技术** 采用Bloom Filter实现高速去重: ```java public class TrafficDeduplicator { private static final BloomFilter<String> filter = BloomFilter.create(Funnels.stringFunnel(), 1000000, 0.001); public boolean isDuplicate(TrafficPacket packet) { String fingerprint = packet.getRoadId() + "_" + packet.getTimestamp()/300000; // 5分钟时间片 return filter.mightContain(fingerprint); } } ``` 该方法在引用[5]的Java大数据架构中已验证可实现400%效率提升 6. **多模态数据融合去重** 对交通流量、GPS浮动车、手机信令等多源数据,建立特征矩阵: $$ \mathbf{F} = \begin{bmatrix} f_{\text{time}} & f_{\text{space}} & f_{\text{speed}} \\ \vdots & \vdots & \vdots \end{bmatrix} $$ 使用孤立森林算法检测重复数据点,准确率可达95%以上[^4] ### 实际应用案例 某城市在千岛湖镇改造项目中,通过卡口车牌数据去重,将重复数据占比从12.7%降至0.8%。具体实施步骤: 1. 建立车辆轨迹时空索引 2. 设置5分钟时间窗和200米空间阈值 3. 应用改进的DBSCAN聚类算法合并重复点 改造后路段通行效率提升25%,验证了去重技术的有效性[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值