Paper Title: Collaborative Learning of Anomalies with Privacy (CLAP) for Unsupervised Video Anomaly Detection: A New Baseline
背景:
视频异常检测的目标是识别视频流中偏离正常模式的行为或事件。
根据是否需要标注数据,VAD方法通常可以分为以下几类:
-
监督学习(Supervised Learning):
- 方法:依赖标注的“正常”和“异常”数据。
- 缺点:异常事件的多样性和稀缺性使得全面标注异常行为几乎不可能。
- 示例:开放集异常检测。
-
半监督学习(Semi-Supervised Learning):
- 方法:假设所有未标注数据都是“正常”的,通过学习正常行为来识别异常。
- 示例:基于记忆增强的异常检测。
-
无监督学习(Unsupervised Learning):
- 方法:从未标注的数据中学习正常行为的分布模式,识别偏离分布的异常行为。
- 优点:无需标注,适用范围广。
- 示例:基于生成对抗网络(GAN)或自编码器(Autoencoder)的重建误差检测。
-
弱监督学习(Weakly-Supervised Le