用于无监督视频异常检测的隐私异常协作学习 (CLAP):新基线

  Paper Title: Collaborative Learning of Anomalies with Privacy (CLAP) for Unsupervised Video Anomaly Detection: A New Baseline

背景:

视频异常检测的目标是识别视频流中偏离正常模式的行为或事件。

根据是否需要标注数据,VAD方法通常可以分为以下几类:

  1. 监督学习(Supervised Learning)

    • 方法:依赖标注的“正常”和“异常”数据。
    • 缺点:异常事件的多样性和稀缺性使得全面标注异常行为几乎不可能。
    • 示例:开放集异常检测。
  2. 半监督学习(Semi-Supervised Learning)

    • 方法:假设所有未标注数据都是“正常”的,通过学习正常行为来识别异常。
    • 示例:基于记忆增强的异常检测。
  3. 无监督学习(Unsupervised Learning)

    • 方法:从未标注的数据中学习正常行为的分布模式,识别偏离分布的异常行为。
    • 优点:无需标注,适用范围广。
    • 示例:基于生成对抗网络(GAN)或自编码器(Autoencoder)的重建误差检测。
  4. 弱监督学习(Weakly-Supervised Le

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值