Magma:多模态AI智能体的基础模型

Paper Title:Magma: A Foundation Model for Multimodal AI Agents

Project Website: https://microsoft.github.io/Magma

该论文发布于2025年2月18日。

1. 多模态理解(Multimodal Understanding):给定一个场景,Magma可以回答图像描述的问题或从语言中理解问题。

2. 动作定位(Action  Grounding):Magma能够通过Set-of-Mark(SoM)技术对可操作对象进行定位。

3. 动作规划(Action Planning):一旦理解了任务并定位了可操作的对象,Magma就能够通过Trace-of-Mark (ToM) 技术进行动作规划,预测任务执行的步骤和未来的动作。

VLA模型通常被分别训练,以简化问题,然后在不同任务中使用。

由于不同环境之间的固有差异(例如,2D数字世界与3D物理世界)

1. 在数字世界中的典型模型包括Pix2ACTWebGUMFerret-UI用于UI导航。

2. 在3D物理世界中的VLA模型包括RT-2Open-VLA用于机器人操作。

在本论文研究中,开发了一个基础模型,以便在数字和物理环境中执行多模态AI任务。

该模型需具备以下能力:

  • 多模态理解:理解来自各个领域的多模态输入(包括数字和物理环境),不仅在语义上理解,而且在空间和时间上理解。
  • 多模态动作预测:将长远的任务分解为一组准确的动作序列,这些动作可以被AI代理系统有效地执行。

一个多模态AI智能体应该能够对给定目标进行多模态理解和行动预测。

为了赋予广泛的能力,利用了大量异构的视觉-语言和动作数据集:

  • UI数据集(例如SeekClick)、
  • 机器人操作数据集(例如OXE)、
  • 人类教学视频数据集(例如Ego-4d)
  • 用于LMM(大型多模态模型)的图像-文本配对数据

因为多模态理解(主要是语言的)与执行任务的动作(主要是空间的)之间存在显著差距。为了弥合这一差距,本论文提出了两种替代任务来进行模型训练:动作定位动作规划。

问题定义:

π表示多模态AI代理模型,是一个函数,I是视觉观察输入,task是任务描述,ctx是上下文信息。
输出O中的元素可能是语言符号,可能是空间符号。

此公式可以适用于不同的任务类型:

1. UI导航任务

2. 机器人操作任务

3. 多模态理解任务

在构建一个强大的多模态AI代理基础模型时,面临两个关键挑战:

  1. 预训练目标:如何构建一个统一的预训练接口以促进联合训练?
    一个直接的方法是预测UI导航的2D坐标、机器人末端执行器的3D位置,以及视觉-语言任务的常规文本输出。然而,在我们的实验中&#

<think>好的,我现在需要帮助用户了解Magma软件的使用方法和功能。首先,我需要整理现有的引用信息。引用[1]提到了Magma的安装、基本操作、多项式运算、加载文件、集合和循环语句。引用[2]可能是一个示例文档的链接,但用户无法直接访问。引用[3]提到Magma是一个多模态基础模型,具有视觉理解和执行能力。不过用户的问题主要关注使用教程和功能,所以可能需要优先考虑引用[1]和[2]。 接下来,我应该分步骤回答。首先介绍Magma是什么,根据引用[3],它是由微软和华盛顿大学开发的,具有多模态能力,但引用[1]似乎更偏向代数计算。这里可能存在混淆,因为Magma原本是一个代数计算软件,而微软的Magma可能是另一个项目。需要确认用户指的是哪个Magma。根据用户引用的内容,引用[1]和[2]是关于代数计算的,而引用[3]是另一个同名的AI模型。用户的问题中提到“代数计算软件包”,所以应该以引用[1]和[2]为主。 然后,我需要按照引用[1]的结构,分安装、基本操作、多项式运算、文件加载、集合和循环等部分来介绍使用方法。同时,引用[2]可能提供了更多示例,但由于无法查看具体内容,只能建议用户参考官方文档。 另外,注意回答要符合系统级指令:使用正确的中文,数学公式用$...$,独立公式用$$...$$。不过当前问题可能不涉及太多数学公式,但如果有的话需要正确应用。 最后,生成相关问题,可能需要包括安装问题、基本操作、功能对比等。确保引用标识正确添加到对应的位置,例如引用[1]和[2]对应代数计算Magma,引用[3]对应微软的多模态模型,但用户的问题可能更关注前者,所以主要引用[1]和[2]。 现在组织回答结构: 1. Magma简介:两种Magma的可能,但根据用户引用,重点在代数计算软件。 2. 安装步骤:根据引用[1]的安装说明。 3. 基本操作:如启动界面、基本命令。 4. 核心功能:多项式运算、文件加载、集合和循环。 5. 学习资源:引用[2]的示例文档。 6. 其他相关:提到微软的Magma可能引起混淆,所以需要指出区别。 相关问题部分需要围绕使用教程、功能、与其他软件对比等生成。</think>### Magma软件使用教程与功能介绍 #### 一、Magma简介 Magma是一款专注于代数计算的高性能软件,支持群论、数论、代数几何等领域的复杂运算[^1]。其语法接近数学自然语言,适合研究人员和工程师进行符号计算。需要注意的是,微软研究院的“Magma”是多模态模型(引用[3]),与代数计算软件Magma为不同产品。 #### 二、安装方法 1. **下载与安装** 访问[Magma官网](http://magma.maths.usyd.edu.au/magma/)获取安装包,支持Windows/Linux/macOS系统。 2. **许可证激活** 需申请学术或商业许可证,安装后通过命令行激活: ```bash magma -license your_license_key ``` #### 三、基本操作 启动Magma后进入交互界面: ```magma > 2 + 3; // 输入表达式以分号结尾 5 > R<x> := PolynomialRing(Rationals()); // 定义多项式环 ``` 支持变量赋值、函数定义等操作,例如求解方程: ```magma > eq := x^2 - 5*x + 6; > Roots(eq); // 输出根 [ <2, 1>, <3, 1> ] ``` #### 四、核心功能 1. **多项式运算** - 求商和余数: ```magma > f := x^3 + 2*x + 5; > g := x + 1; > q, r := Quotrem(f, g); // q为商,r为余数 ``` - 因式分解: ```magma > Factorization(x^4 - 1); [ <x - 1, 1>, <x + 1, 1>, <x^2 + 1, 1> ] ``` 2. **文件加载** 使用`load`命令加载外部脚本: ```magma > load "example.m"; // 执行文件中的代码 ``` 3. **集合与笛卡尔积** Magma支持集合操作: ```magma > S := {1, 2, 3}; > T := CartesianProduct(S, S); // 生成笛卡尔积 ``` 4. **循环与迭代** 示例:计算阶乘: ```magma > n := 5; > fact := 1; > for i in [1..n] do > fact *:= i; > end for; > fact; 120 ``` #### 五、学习资源 - 官方示例库:[Magma示例文档](http://magma.maths.usyd.edu.au/magma/pdf/examples.pdf)包含数百个案例[^2] - 内置帮助系统:输入`?`查看命令列表,例如`?PolynomialRing` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值