2.3 矩阵的行列式与代数运算

第二章 线性代数

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

2.3 矩阵的行列式与代数运算

  1. 行列式的定义

    定义逆序数 τ ( i 1 ⋯ i n ) \tau(i_1\cdots i_n) τ(i1in)为排序 i 1 ⋯ i n i_1\cdots i_n i1in中满足 ( p − q ) ( i p − i q ) < 0 (p-q)(i_p-i_q)<0 (pq)(ipiq)<0所有实数对 ( i p , i q ) (i_p,i_q) (ip,iq)的数目,其中 ( i p , i q ) (i_p,i_q) (ip,iq) 称为一个逆序。

    定义 δ ( i 1 ⋯ i n ) = ( − 1 ) τ ( i 1 ⋯ i n ) \delta(i_1\cdots i_n)=(-1)^{\tau(i_1\cdots i_n)} δ(i1in)=(1)τ(i1in),从而可以定义行列式

    det ⁡ A = ∣ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a n 1 ⋯ a n n ∣ = ∑ ( i 1 ⋯ i n ) δ ( i 1 ⋯ i n ) a i 1 ⋯ a i n \det \boldsymbol{A}=\begin{vmatrix}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{n1}&\cdots&a_{nn}\end{vmatrix}=\sum_{(i_1\cdots i_n)}\delta(i_1\cdots i_n)a_{i_1}\cdots a_{i_n} detA= a11an1a1nann =(i1in)δ(i1in)ai1ain

  2. 余子式和代数余子式

    行列式中去掉第 i i i行和第 j j j列得到的行列式称为余子式,记作 M i j M_{ij} Mij

    代数余子式需要考虑位置关系: A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij

  3. 行列式展开定理

    ∑ i = 1 n a i k A i j = { 0 ( k ≠ j ) ∣ A ∣ ( k = j ) 或 ∑ j = 1 n a k j A i j = { 0 ( k ≠ i ) ∣ A ∣ ( k = j ) \sum_{i=1}^na_{ik}A_{ij}=\begin{cases}0(k\ne j)\\|A|(k=j)\end{cases}或\sum_{j=1}^na_{kj}A_{ij}=\begin{cases}0(k\ne i)\\|A|(k=j)\end{cases} i=1naikAij={0(k=j)A(k=j)j=1nakjAij={0(k=i)A(k=j)

  4. 行列式运算性质

    ( 1 ) det ⁡ ( a 1 , ⋯   , b + c , ⋯   , a n ) = det ⁡ ( a 1 , ⋯   , b , ⋯   , a n ) + det ⁡ ( a 1 , ⋯   , c , ⋯   , a n ) ( 2 ) det ⁡ ( a 1 , ⋯   , λ a i , ⋯   , a n ) = λ det ⁡ ( a 1 , ⋯   , a i , ⋯   , a n ) ( 3 ) det ⁡ ( a 1 , ⋯   , a i , ⋯   , a j , ⋯   , a n ) = − det ⁡ ( a 1 , ⋯   , a j , ⋯   , a i , ⋯   , a n ) ( 4 ) det ⁡ ( a 1 , ⋯   , a i , ⋯   , a j , ⋯   , a n ) = 0 , 若 a i = λ a j ( 5 ) det ⁡ ( a 1 , ⋯   , a i , ⋯   , a j , ⋯   , a n ) = 0 , 若 a i = 0 ( 6 ) det ⁡ ( a 1 , ⋯   , a i , ⋯   , a j , ⋯   , a n ) = det ⁡ ( a 1 , ⋯   , a i + λ a j , ⋯   , a j , ⋯   , a n ) ( 7 ) det ⁡ ( a 1 , , ⋯   , a n ) = det ⁡ ( a 1 , , ⋯   , a n ) T \begin{aligned} &(1)\det(a_1,\cdots,b+c,\cdots,a_n)=\det(a_1,\cdots,b,\cdots,a_n)+\det(a_1,\cdots,c,\cdots,a_n)\\ &(2)\det(a_1,\cdots,\lambda a_i,\cdots,a_n)=\lambda\det(a_1,\cdots,a_i,\cdots,a_n)\\ &(3)\det(a_1,\cdots,a_i,\cdots,a_j,\cdots,a_n)=-\det(a_1,\cdots,a_j,\cdots,a_i,\cdots,a_n)\\ &(4)\det(a_1,\cdots,a_i,\cdots,a_j,\cdots,a_n)=0,若a_i=\lambda a_j\\ &(5)\det(a_1,\cdots,a_i,\cdots,a_j,\cdots,a_n)=0,若a_i=\boldsymbol{0}\\ &(6)\det(a_1,\cdots,a_i,\cdots,a_j,\cdots,a_n)=\det(a_1,\cdots,a_i+\lambda a_j,\cdots,a_j,\cdots,a_n)\\ &(7)\det(a_1,,\cdots,a_n)=\det(a_1,,\cdots,a_n)^T \end{aligned} (1)det(a1,,b+c,,an)=det(a1,,b,,an)+det(a1,,c,,an)(2)det(a1,,λai,,an)=λdet(a1,,ai,,an)(3)det(a1,,ai,,aj,,an)=det(a1,,aj,,ai,,an)(4)det(a1,,ai,,aj,,an)=0,ai=λaj(5)det(a1,,ai,,aj,,an)=0,ai=0(6)det(a1,,ai,,aj,,an)=det(a1,,ai+λaj,,aj,,an)(7)det(a1,,,an)=det(a1,,,an)T

  5. 伴随矩阵

    将原矩阵对应元素用对应代数余子式替代,得到的矩阵进行转置后得到伴随矩阵

    若 A = [ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a n 1 ⋯ a n n ] , 则 A ∗ = [ A 11 ⋯ A n 1 ⋮ ⋱ ⋮ A 1 n ⋯ A n n ] 若\boldsymbol{A}=\begin{bmatrix}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{n1}&\cdots&a_{nn}\end{bmatrix},则\boldsymbol{A}^*=\begin{bmatrix}A_{11}&\cdots&A_{n1}\\\vdots&\ddots&\vdots\\A_{1n}&\cdots&A_{nn}\end{bmatrix} A= a11an1a1nann ,A= A11A1nAn1Ann

    两个计算要点:乘以位置系数 ( − 1 ) i + j (-1)^{i+j} (1)i+j,取转置。

  6. 逆矩阵

    对于矩阵 A \boldsymbol{A} A ,若存在 B \boldsymbol{B} B使得 A B = B A = E \boldsymbol{A}\boldsymbol{B}=\boldsymbol{B}\boldsymbol{A}=\boldsymbol{E} AB=BA=E E \boldsymbol{E} E为单位阵,则称 B \boldsymbol{B} B A \boldsymbol{A} A的逆矩阵。

    A , B \boldsymbol{A},\boldsymbol{B} A,B均为 n n n阶可逆矩阵, k k k是非零常数,则

    ( A B ) − 1 = B − 1 A − 1 , ( k A ) − 1 = 1 k A − 1 , ( A T ) − 1 = ( A − 1 ) T (\boldsymbol{A}\boldsymbol{B})^{-1}=\boldsymbol{B}^{-1}\boldsymbol{A}^{-1},\quad(k\boldsymbol{A})^{-1}=\frac 1k \boldsymbol{A}^{-1},\quad(\boldsymbol{A}^T)^{-1}=(\boldsymbol{A}^{-1})^T (AB)1=B1A1,(kA)1=k1A1,(AT)1=(A1)T

  7. 抽象矩阵的行列式计算

    ( 1 ) ∣ k A ∣ = k n ∣ A ∣ , 其中 k 为常数 , A 为 n 阶矩阵 ( 2 ) ∣ A O C B ∣ = ∣ A D O B ∣ = ∣ A ∣ ∣ B ∣ , 其中 A 和 B 均为方阵 , 可以不同阶 ( 3 ) ∣ O A B C ∣ = ∣ D A B O ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ , 其中 A 为 m 阶方阵 , B 为 n 阶方阵 ( 4 ) A A ∗ = A ∗ A = ∣ A ∣ E ( 5 ) ∣ A ∗ ∣ = ∣ A ∣ n − 1 , 其中 A 为 n 阶方阵 ( 6 ) ( A ∗ ) ∗ = ∣ A ∣ n − 2 A , 其中 A 为 n 阶方阵 ( 7 ) ∣ A − 1 ∣ = ∣ A ∣ − 1 , 若 A 可逆 \begin{aligned} &(1)|k\boldsymbol{A}|=k^n|\boldsymbol{A}|,其中k为常数,\boldsymbol{A}为n阶矩阵\\ &(2)\begin{vmatrix}\boldsymbol{A}&\boldsymbol{O}\\\boldsymbol{C}&\boldsymbol{B}\end{vmatrix}=\begin{vmatrix}\boldsymbol{A}&\boldsymbol{D}\\\boldsymbol{O}&\boldsymbol{B}\end{vmatrix}=|\boldsymbol{A}||\boldsymbol{B}|,其中\boldsymbol{A}和\boldsymbol{B} 均为方阵,可以不同阶\\ &(3)\begin{vmatrix}\boldsymbol{O}&\boldsymbol{A}\\\boldsymbol{B}&\boldsymbol{C}\end{vmatrix}=\begin{vmatrix}\boldsymbol{D}&\boldsymbol{A}\\\boldsymbol{B}&\boldsymbol{O}\end{vmatrix}=(-1)^{mn}|\boldsymbol{A}||\boldsymbol{B}|,其中\boldsymbol{A}为m阶方阵,\boldsymbol{B}为n阶方阵\\ &(4)\boldsymbol{A}\boldsymbol{A}^*=\boldsymbol{A}^*\boldsymbol{A}=|\boldsymbol{A}|\boldsymbol{E}\\ &(5)|\boldsymbol{A}^*|=|\boldsymbol{A}|^{n-1},其中\boldsymbol{A}为n阶方阵\\ &(6)(\boldsymbol{A}^*)^*=|\boldsymbol{A}|^{n-2}\boldsymbol{A},其中\boldsymbol{A}为n阶方阵\\ &(7)|\boldsymbol{A}^{-1}|=|\boldsymbol{A}|^{-1},若\boldsymbol{A}可逆 \end{aligned} (1)kA=knA,其中k为常数,An阶矩阵(2) ACOB = AODB =A∣∣B,其中AB均为方阵,可以不同阶(3) OBAC = DBAO =(1)mnA∣∣B,其中Am阶方阵,Bn阶方阵(4)AA=AA=AE(5)A=An1,其中An阶方阵(6)(A)=An2A,其中An阶方阵(7)A1=A1,A可逆

  8. 矩阵的加法和数乘

    A = ( a i j ) m × n , B = ( b i j ) m × n \boldsymbol{A}=(a_{ij})_{m\times n},\boldsymbol{B}=(b_{ij})_{m\times n} A=(aij)m×n,B=(bij)m×n,则 A ± B = ( a i j ± b i j ) m × n \boldsymbol{A}\pm\boldsymbol{B}=(a_{ij}\pm b_{ij})_{m\times n} A±B=(aij±bij)m×n

    A = ( a i j ) m × n \boldsymbol{A}=(a_{ij})_{m\times n} A=(aij)m×n,若 λ A = ( λ a i j ) m × n \lambda\boldsymbol{A}=(\lambda a_{ij})_{m\times n} λA=(λaij)m×n

  9. 矩阵的乘法

    A = ( a i j ) m × s , B = ( b i j ) s × n \boldsymbol{A}=(a_{ij})_{m\times s},\boldsymbol{B}=(b_ij)_{s\times n} A=(aij)m×s,B=(bij)s×n,则 A B = C \boldsymbol{A}\boldsymbol{B}=\boldsymbol{C} AB=C,其中 C = ( c i j ) m × n , c i j = ∑ k = 1 s a i k b k j \boldsymbol{C}=(c_{ij})_{m\times n},c_{ij}=\sum\limits_{k=1}^sa_{ik}b_{kj} C=(cij)m×n,cij=k=1saikbkj

  10. 矩阵的转置运算

    ( 1 ) ( A T ) T = A ( 2 ) ( A + B ) T = A T + B T ( 3 ) ( λ A ) T = λ A T ( 4 ) ( A B ) T = B T A T \begin{aligned} &(1)(\boldsymbol{A}^T)^T=\boldsymbol{A}\\ &(2)(\boldsymbol{A}+\boldsymbol{B})^T=\boldsymbol{A}^T+\boldsymbol{B}^T\\ &(3)(\lambda\boldsymbol{A})^T=\lambda \boldsymbol{A}^T\\ &(4)(\boldsymbol{A}\boldsymbol{B})^T=\boldsymbol{B}^T\boldsymbol{A}^T \end{aligned} (1)(AT)T=A(2)(A+B)T=AT+BT(3)(λA)T=λAT(4)(AB)T=BTAT

    A \boldsymbol{A} A n n n阶矩阵,若 A T = A \boldsymbol{A}^T=\boldsymbol{A} AT=A则称 A \boldsymbol{A} A为对称矩阵,若 A T = − A \boldsymbol{A}^T=-\boldsymbol{A} AT=A则称 A \boldsymbol{A} A为反对称矩阵。

  11. 初等方阵与初等变换

    对矩阵的以下三种变换称为初等变换:

    (1)交换矩阵的任意两行(列);

    (2)用一个非零数去乘矩阵某一行(列)的所有元素;

    (3)将一行(列)元素任意倍加到另一行(列)去。

    由单位矩阵经过一次初等变换得到的矩阵称为初等方阵。

    左乘初等矩阵相当于对原始矩阵进行行变换,右乘初等矩阵相当于对原始矩阵进行列变换。

    三种变换均不改变矩阵的秩,但如果原矩阵为方阵,只有第三种变换不改变矩阵的行列式。

  12. 矩阵的等价

    A , B \boldsymbol{A},\boldsymbol{B} A,B均为 m × n m\times n m×n矩阵,若 A \boldsymbol{A} A可以经过有限次初等变换化为 B \boldsymbol{B} B,则称 A \boldsymbol{A} A B \boldsymbol{B} B等价。

    A \boldsymbol{A} A B \boldsymbol{B} B等价的充要条件是:存在 m m m阶可逆阵 P \boldsymbol{P} P n n n阶可逆阵 Q \boldsymbol{Q} Q,使得 P A Q = B \boldsymbol{P}\boldsymbol{A}\boldsymbol{Q}=\boldsymbol{B} PAQ=B

  13. n n n阶方阵的秩相关结论

    ( 1 ) R ( A ) = n ⇔ R ( A ∗ ) = n ( 2 ) R ( A ) = n − 1 ⇔ R ( A ∗ ) = 1 ( 3 ) R ( A ) < n − 1 ⇔ R ( A ∗ ) = 0 \begin{aligned} &(1)R(\boldsymbol{A})=n\Leftrightarrow R(\boldsymbol{A}^*)=n\\ &(2)R(\boldsymbol{A})=n-1\Leftrightarrow R(\boldsymbol{A}^*)=1\\ &(3)R(\boldsymbol{A})<n-1\Leftrightarrow R(\boldsymbol{A}^*)=0 \end{aligned} (1)R(A)=nR(A)=n(2)R(A)=n1R(A)=1(3)R(A)<n1R(A)=0

  14. 矩阵秩相关的其他结论

    ( 1 ) R ( A + B ) ≤ R [ ( A , B ) ] ≤ R ( A ) + R ( B ) ( 2 ) R ( A B ) ≤ min ⁡ { R ( A ) , R ( B ) } ( 3 ) 若 A m × n B n × p = O m × p , 则 R ( A ) + R ( B ) ≤ n \begin{aligned} &(1)R(\boldsymbol{A}+\boldsymbol{B})\le R[(\boldsymbol{A},\boldsymbol{B})]\le R(\boldsymbol{A})+R(\boldsymbol{B})\\ &(2)R(\boldsymbol{A}\boldsymbol{B})\le\min\{R(\boldsymbol{A}),R(\boldsymbol{B})\}\\ &(3)若\boldsymbol{A}_{m\times n}\boldsymbol{B}_{n\times p}=\boldsymbol{O}_{m\times p},则R(\boldsymbol{A})+R(\boldsymbol{B})\le n \end{aligned} (1)R(A+B)R[(A,B)]R(A)+R(B)(2)R(AB)min{R(A),R(B)}(3)Am×nBn×p=Om×p,R(A)+R(B)n

  15. 矩阵的标准形

    设矩阵 A \boldsymbol{A} A是秩为 r r r m × n m\times n m×n矩阵,则存在 m m m阶可逆矩阵 P \boldsymbol{P} P n n n阶可逆矩阵 Q \boldsymbol{Q} Q,使得

    P A Q = [ E r O O O ] m × n \boldsymbol{P}\boldsymbol{A}\boldsymbol{Q}=\begin{bmatrix}\boldsymbol{E}_r&\boldsymbol{O}\\\boldsymbol{O}&\boldsymbol{O}\end{bmatrix}_{m\times n} PAQ=[ErOOO]m×n

    [ E r O O O ] m × n \begin{bmatrix}\boldsymbol{E}_r&\boldsymbol{O}\\\boldsymbol{O}&\boldsymbol{O}\end{bmatrix}_{m\times n} [ErOOO]m×n为矩阵 A \boldsymbol{A} A的标准形。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值