4.1 命题逻辑

本文介绍了命题逻辑的基础概念,包括命题、联结词、真值赋值和对偶定理。阐述了永真式与永假式的主范式,并详细解释了逻辑推论及其相关定理,探讨了完全集和极小完全集的概念。内容涵盖逻辑系统的构建和分析,适合逻辑学和计算机科学的学生学习。
摘要由CSDN通过智能技术生成

第四章 数理逻辑

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

4.1 命题逻辑

  1. 简单的基础概念

    命题、联结词

    命题变元、原子公式、由联结词集合生成的公式

    真值赋值、永真式、可满足式、永假式、真值表、替换

    等值演算、对偶定理

    文字、简单合取式(析取式)、合取(析取)范式、主合取(析取)范式

    逻辑推论

  2. 对偶定理

    A A A是由 { 0 , 1 , ⌝ , ∧ , ∨ } \{0,1,\urcorner,\wedge,\vee\} {0,1,,,}生成的公式,将 A A A中的 ∧ \wedge ∨ \vee 互换, 0 0 0 1 1 1互换得到 A ∗ A^* A,称 A ∗ A^* A A A A互为对偶式。

    若真值赋值 v 1 , v 2 v_1,v_2 v1,v2满足:对每个命题变元 p p p p v 1 ≠ p v 2 p^{v_1}\neq p^{v_2} pv1=pv2,则称 v 1 , v 2 v_1,v_2 v1,v2是相反的真值赋值。

    A A A是由 { 0 , 1 , ⌝ , ∧ , ∨ } \{0,1,\urcorner,\wedge,\vee\} {0,1,,,}生成的公式, A ∗ A^* A A A A互为对偶式, v v v v ′ v' v是箱单的真值赋值,则 v ( A ∗ ) = ⌝ v ′ ( A ) v(A^*)=\urcorner v'(A) v(A)=v(A)

    对偶定理:设 A , B A,B A,B { 0 , 1 , ⌝ , ∧ , ∨ } \{0,1,\urcorner,\wedge,\vee\} {0,1,,,}生成的公式, A A A A ∗ A^* A互为对偶式, B B B B ∗ B^* B互为对偶式,则

    如果 A ⇔ B , 那么 A ∗ ⇔ B ∗ 如果A\Leftrightarrow B,那么A^*\Leftrightarrow B^* 如果AB,那么AB

  3. 完全集和极小完全集

    S S S是联结词集合。如果每个 n ( n ≥ 1 ) n(n\ge1) n(n1)元联结词都可由 S S S定义,则称 S S S为完全集。

    若从完全集 S S S中去掉任意一个联结词就成为不完全的了,则称 S S S为极小完全集。

    若完全集 S 1 S_1 S1中的每个联结词都可由联结词集合 S 2 S_2 S2定义,则 S 2 S_2 S2也是完全集。

  4. 永真式与永假式的主范式

    出现 n n n个命题变元的公式 A A A为永真式,与以下两个条件均等价:

    ( 1 ) A (1)A (1)A的主析取范式中包含所有 2 n 2^n 2n个极小项。

    ( 2 ) A (2)A (2)A的主合取范式中不包含任何极大项。

    出现 n n n个命题变元的公式 A A A为永假式,与以下两个条件均等价:

    ( 1 ) A (1)A (1)A的主析取范式不包含任何极小项。

    ( 2 ) A (2)A (2)A的主合取范式中包含所有 2 n 2^n 2n个极大项。

  5. 逻辑推论

    若真值赋值 v v v满足公式集合 Γ \Gamma Γ中的每个公式,则称 v v v满足 Γ \Gamma Γ

    A A A是公式,若每个满足 Γ \Gamma Γ的真值赋值都满足 A A A,则称 A A A Γ \Gamma Γ的逻辑推论,记为 Γ ⊨ A \Gamma\vDash A ΓA

  6. 逻辑推论相关定理

    A A A是公式则 ⊨ A \vDash A A当且仅当 A A A是永真式。

    A 1 , ⋯   , A n , B A_1,\cdots,A_n,B A1,,An,B是公式,则 A 1 , ⋯   , A n ⊨ B A_1,\cdots,A_n\vDash B A1,,AnB,当且仅当 A 1 ∧ ⋯ ∧ A n → B A_1\wedge\cdots\wedge A_n\to B A1AnB是永真式。

    A , B A,B A,B是公式,则 A ⇔ B A\Leftrightarrow B AB,当且仅当 A ⊨ B A\vDash B AB B ⊨ A B\vDash A BA

    Γ \Gamma Γ是公式集, A , B A,B A,B是公式,则 Γ ∪ { A } ⊨ B \Gamma\cup\{A\}\vDash B Γ{A}B,当且仅当 Γ ⊨ A → B \Gamma\vDash A\to B ΓAB

    n n n是正整数,则公式集 { A 1 , ⋯ A n } \{A_1,\cdots A_n\} {A1,An}是可满足的,当且仅当 A 1 ∧ ⋯ ∧ A n A_1\wedge\cdots\wedge A_n A1An是可满足式。

    Γ \Gamma Γ是公式集,则 Γ \Gamma Γ是不可满足的,当且仅当每个公式都是 Γ \Gamma Γ的逻辑推论。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值