【电动车】基于双层凸优化的燃料电池混合动力汽车研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于双层凸优化的燃料电池混合动力汽车(FCHEV)研究

一、双层凸优化的定义与核心框架

二、关键技术路线与数学模型

四、优势与局限性分析

五、未来研究方向

六、结论

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现、数据、文章下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于双层凸优化的燃料电池混合动力汽车(FCHEV)研究

一、双层凸优化的定义与核心框架

双层凸优化为FCHEV的能量管理提供了兼顾全局最优与实时响应的解决方案。尽管存在模型简化与计算资源限制,但其在生态驾驶、多源分配等场景中的显著性能优势,使其成为未来清洁能源汽车研究的核心方向之一。随着算法创新与硬件进步,其实用性与可靠性有望进一步提升。

随着车辆互联性的出现,互联汽车 (CVs) 在增强道路安全、改善乘坐舒适性、提高交通效率和提高能源效率方面提供了巨大的潜力。通过从车对车 (V2V) 和车对基础设施 (V2I) 通信中获取交通信息,CV 能够更准确、更广泛地感知,从而有助于更好地做出决策。因此,CV 的个人或协作生态驾驶获得了更多通过优化车速来降低能源利用率的机会 [3]。燃料电池汽车(FCV)具有高效、节能、零污染等优点,已成为汽车电气化进程中的重要发展方向。 FCV可分为仅使用燃料电池的燃料电池电动汽车(FCEV)和燃料电池混合动力电动汽车(FCHEV)。

混合动力电动汽车 (HEV) 和插电式混合动力电动汽车 (PHEV),FCHEV 具有混合动力系统,包括电池在内的多种能源。混合动力汽车的能源消耗本质上与能源管理策略(EMS)相关,它决定了不同能源之间的能源分配。因此,FCHEV 的生态驾驶涉及能源管理,这比具有单一能源的车辆(例如内燃机汽车(ICEV)和电池电动汽车(BEV))更复杂。

图 1 所示为所研究的 FCHEV 的动力总成拓扑结构,它由燃料电池系统和电池组组成。燃料电池系统通过 DC/DC 转换器连接到电源总线,并通过 DC/AC 逆变器与电池一起为电动机供电以驱动车辆。车辆和动力总成参数使用 ADVISOR中 FCHEV 的默认值,如表 1 所示。根据本文的主题,建模侧重于动力总成组件(即燃料电池、电池和电机)和其他组件(例如,DC/DC 转换器、DC/AC 逆变器和主减速器)的功率损耗不被考虑,这意味着它们的效率(例如,相应的 \etaDC/DC 、\etaDC/AC 和 \etaFD) 为 100%。

          

                                 图1 FCHEV 的动力总成拓扑结构

双层凸优化是一种分层优化方法,由两个嵌套的凸优化问题组成: 外层(上层) 负责全局目标优化, 内层(下层) 解决局部子问题。在FCHEV中,这种架构能有效协调多目标优化(如燃料经济性、电池寿命、驾驶舒适性)与实时动态控制。

  • 上层优化:以全局最优为目标,例如最小化燃料消耗、延长电池寿命、优化驾驶舒适性。其数学模型通常为凸优化问题,目标函数可表达为二次函数或线性组合。
  • 下层优化:针对子系统(如燃料电池、电池、电机),通过局部凸优化跟踪上层分配的能量需求。常用模型预测控制(MPC)或交替方向乘子法(ADMM)实现实时响应。
二、关键技术路线与数学模型

电动车动力学方程

电动车的纵向动力学可以表示为:

               \dot{v}=\frac{F_{d r v}+F_{b r k}}{M}-\left(G \sin \theta+G f_{r} \cos \theta+\frac{\rho A C_{D}}{2 M} v^{2}\right)

其中 v、M、fr 和 A 分别表示车辆的速度、质量、滚动阻力系数和正面面积;车辆加速度a=\dot{v}; Fdrv 和 Fbrk 分别是电动机提供的机械力和车轮摩擦制动器提供的力; G是重力加速度;\theta表示道路坡道,\rho和 CD 分别表示空气密度和阻力系数。

因此,电动车P_{dmd}的功率需求由下式求得:

                  P_{d m d}=\left(F_{d r v}+F_{b r k}\right) v

电池模型

本文采用包括内阻和电压源的等效电路模型,可表示为 :

                 \left\{\begin{array}{c} V_{b a t}=V_{O C}-I_{b a t} R_{0} \\ P_{b a t}=V_{b a t} I_{b a t} \\ P_{O C}=V_{O C} I_{b a t} \end{array}\right.

其中Vbat、VOC、Ibat、R0、Pbat和POC分别为电池的电压、开路电压、电流、内阻、输出功率和化学功率。 VOC 和 R0 都是电池充电状态 (SOC) 的函数。因此,电池电流 Ibat 由下式给出:

                   I_{b a t}=\frac{V_{O C}-\sqrt{V_{O C}^{2}-4 R_{0} P_{b a t}}}{2 R_{0}}

数学模型详细内容可以参考后文。在本文第四节——Matlab代码实现中有文档。

三、具体应用场景与案例

  1. 生态驾驶策略

    • 在多个信号交叉口场景中,通过双层优化解耦速度规划与能量管理。上层优化车速以匹配绿灯相位,下层实时分配燃料电池与电池功率,减少氢耗量并提升能效。
    • 案例:某研究显示,该方法在UDDS+HWFET工况下,氢气消耗量减少4.37%,燃料电池效率提升0.17%。
  2. 多源能量分配

    • 在燃料电池-电池-超级电容混合系统中,上层通过全局优化确定能量分配比例,下层利用滑动平均滤波算法平滑电池输出功率,降低动态负载对燃料电池的冲击。
  3. 跟车能量管理

    • 基于Stackelberg博弈的双层框架:上层优化跟车安全性与舒适性,下层控制燃料电池与电池的功率分配,实验表明平均车间距误差降低37.7%,等效氢耗减少9.3%。
四、优势与局限性分析
  1. 优势

    • 全局最优性:通过分层结构确保整体性能的最优解,避免局部最优陷阱。
    • 计算效率:ADMM等分布式算法显著降低计算复杂度,适用于实时控制。
    • 灵活性:可扩展至多能源系统(如燃料电池-超级电容),适应不同工况需求。
  2. 局限性

    • 模型简化风险:凸化处理可能导致模型精度损失,例如忽略DC/DC转换器效率的非线性特性。
    • 实时性挑战:复杂场景(如频繁启停)下,下层优化可能无法完全跟踪上层指令。
    • 硬件依赖:需高性能计算单元支持在线优化,增加系统成本。
五、未来研究方向
  1. 自适应优化:结合机器学习动态调整目标函数权重,提升工况适应性。
  2. 硬件在环仿真:通过实时仿真验证算法在极端工况下的鲁棒性。
  3. 多目标协同:引入碳足迹评估,扩展优化维度至全生命周期环境影响。
  4. 算法加速:探索量子计算或GPU并行化技术,进一步提升实时性。
六、结论

双层凸优化为FCHEV的能量管理提供了兼顾全局最优与实时响应的解决方案。尽管存在模型简化与计算资源限制,但其在生态驾驶、多源分配等场景中的显著性能优势,使其成为未来清洁能源汽车研究的核心方向之一。随着算法创新与硬件进步,其实用性与可靠性有望进一步提升。

📚2 运行结果

 

 

 

 

 

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Matlab代码实现、数据、文章下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值