李雅普诺夫指数

       李雅普诺夫指数:衡量一个系统因微小初值误差,随时间(迭代)产生分离的程度。当李雅普诺夫指数大于0,可以作为混沌行为的判据。

我们先从简单由最经典的Logistic映射的入手、

Logistic映射:x_{n+1}=ax_{n}(1-x_{n})

定理:\lambda =\lim_{n\rightarrow +\infty }\frac{1}{n}\sum_{i=0}^{n-1}ln |\frac{df}{dx}(x_{i})|,其中f(x)=ax(1-x),\lambda为李雅普诺夫指数。

我们可以作简单的推导,我们从上述概念中来看,李雅普诺夫指数(以下简称李数)为衡量系统因微小初值误差,后面迭代产生分离的程度,也就是说当|x_{0}-y_{0}|=\varepsilon,|x_{n}-y_{n}|=A_{n}|x_{0}-y_{0}| ,显然如果A_{n}随着n的增大而越来越大,那么|x_{n}-y_{n}|也越来越大(就可以说明这个伪随机序列有着良好的混沌性,就是李雅普诺夫指数大于0所指的情况),似乎这个A_{n}跟我们的李雅普诺夫指数是有关联的。

我们先来进行A_{1}的计算

|x_{1}-y_{1}|=|f(x_{0})-f(y_{0})|=A_{1}|x_{0}-y_{0}|,A_{1}=\frac{|f(x_{0})-f(y_{0})|}{|x_{0}-y_{0}|},\\ A_{1}=f^{'}(x_{0})=\lim_{x_{0}-y_{0}}\frac{|f(x_{0})-f(y_{0})|}{|x_{0}-y_{0}|}

类似的我们看A_{2}

|x_{2}-y_{2}|=|f(x_{1})-f(y_{1})|=A_{2}|x_{0}-y_{0}|,A_{2}=\frac{|f(x_{1})-f(y_{1})|}{|x_{0}-y_{0}|},\\ A_{2}=f^{'}(x_{1})f^{'}(x_{0})=\lim_{x_{0}-y_{0}}\frac{|f(x_{1})-f(y_{1})|}{|x_{1}-y_{1}|}*\frac{|f(x_{0})-f(y_{0})|}{|x_{0}-y_{0}|}

从这里可以看出当初始误差很小时,A_{n}=\prod_{i=0}^{n-1}f^{'}(x_{i}),上面我们说到我们希望A_{n}随着n的增大而越来越大,也就是说不收敛,那么\sqrt[n]{A_{n}}=\sqrt[n]{\prod_{i=0}^{n-1}f^{'}(x_{i})}>1,两边取对数,\frac{1}{n}\sum_{i=0}^{n-1}ln |\frac{df}{dx}(x_{i})|>0,这就是李雅普诺夫指数的简单推导。

代码实现

clear;clc;close all;
hold on
a1=2.5:0.001:4;n=2000;
for j=1:length(a1)
a=a1(j);
x0=0.2;e=0;
for i=1:n
d=a-2*a*x0;
e=e+log(abs(d));
x0=a*x0*(1-x0);
end
l(j)=e/n;
end
plot(a1,l,'b')

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我的女友叫苏苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值