1 什么是深度学习?
首先,我们来看两个图:
人工智能:努力将通常由人类完成的智力任务自动化。
机器学习:人工智能的核心,是实现人工智能的必经路径,是使计算机具有智能的根本途径。机器学习是一种新的编程范式,我们输入数据和预期结果,机器学习系统通过训练得到一项数据处理任务的规则。机器学习的三要素是:输入数据点、预期输出的示例、衡量算法效果好坏的方法。衡量结果是一种反馈信号,用于调节算法的工作方式,这个调节步骤就是我们所说的学习。
深度学习:是机器学习的一种,是从数据中学习表示的一种新方法,强调从连续的层中进行学习,这些层对应越来越有意义的表示,这些分层表示几乎总是通过叫作神经网络的模型来实现得到的。
什么是”深度“?
“深度”指的是一系列连续的表示层,通常包含数十个甚至上百个连续的表示层。
什么是”学习“?
“学习”指的是为神经网络的所有层找到一组权重值,使得网络能够将每个示例输入与其目标正确的一一对应。
深度学习不等于神经网络,深度学习是传统神经网络的升级版本,部分深度学习算法中会出现“神经网络”4个字。
2 深度学习的工作原理
深度神经网络通过一系列简单的数据变换(层)来实现这种输入到目标的映射。
层:是深度学习的基础组件,是一个数据处理模块,多个层就组成了网络。将预处理好的数据x输入到神经网络中,再通过一系列的数据变换来实现输入数据到预测值的映射,而每层的变换由一组权重w来进行实现。
损失函数:网络如何衡量模型在训练数据上的性能。损失函数将由x和w经过数据变换得到的预测值与真实目标值进行比较,得到损失值。
优化器:决定着学习过程如何进行。优化器利用损失值作为反馈信号来对权重进行微调,以降低当前损失值,它实现了反向传播算法,这是深度学习的核心算法。
3 为什么深度学习会兴起?
推动深度学习变得如此热门的主要因素有三个:数据规模、计算量及算法的创新
4 深度学习的优缺点
优点:
1.学习能力强
从结果来看,深度学习的表现非常好,他的学习能力非常强
2.覆盖范围广、适应性强
深度学习的神经网络层数很多,宽度很广,理论上可以映射到任意函数,所以能解决很复杂的问题。
3.数据驱动、上限高
深度学习高度依赖数据,数据量越大,他的表现就越好。在图像识别、面部识别、NLP 等部分任务甚至已经超过了人类的表现。同时还可以通过调参进一步提高他的上限。
4.可移植性好
由于深度学习的优异表现,有很多框架可以使用,例如 TensorFlow、Pytorch。这些框架可以兼容很多平台。
缺点:
1.计算量大、便携性差
深度学习需要大量的数据很大量的算力,所以成本很高。并且现在很多应用还不适合在移动设备上使用。目前已经有很多公司和团队在研发针对便携设备的芯片。这个问题未来会得到解决
2.硬件要求高
深度学习对算力要求很高,普通的 CPU 已经无法满足深度学习的要求。主流的算力都是使用 GPU 和 TPU,所以对于硬件的要求很高,成本也很高
3.模型设计复杂
深度学习的模型设计非常复杂,需要投入大量的人力物力和时间来开发新的算法和模型。大部分人只能使用现成的模型
4.没有“人性”、容易存在偏见
由于深度学习依赖数据,并且可解释性不高。在训练数据不平衡的情况下会出现性别歧视、种族歧视等问题。
5 深度学习典型算法
1.CNN:卷积神经网络
2.RNN:循环神经网络
3.GANs:生成对抗网络
4.RL:深度强化学习
6 深度学习的应用
语音识别技术:国内公司讯飞、百度、阿里,国外公司亚马逊,微软等,行业应用就是智能音箱等产品。
图像识别技术:比如做安防的海康威视,图森科技,依图科技,旷视科技,代表性的就是面部识别,人脸识别,刷脸解锁、支付等。
自动驾驶技术:比如特斯拉,uber,百度等公司开发的。
金融领域:预测股价、医疗领域的疾病监测,教育领域的技术赋能等。