✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
⛄ 内容介绍
基于诱骗态量子密钥分发协议的BB84协议中,密钥率的计算取决于光子数、探测效率以及窃听率等因素。以下是在三种不同光子数下(强度为1, 2和3)的密钥率计算示例:
-
光子数为1的情况下,计算密钥率: 密钥率 = QBER * (1 - H2(QBER)) 其中,QBER为量子误码率,表示发送和接收的比特之间不匹配的概率;H2为二进熵函数,用于度量信息的不确定性。
-
光子数为2的情况下,计算密钥率: 密钥率 = QBER * (1 - H2(QBER)) - SR 其中,SR为信号回弹率,表示窃听者截获并重新发送的信号比例。
-
光子数为3的情况下,计算密钥率: 密钥率 = QBER * (1 - H2(QBER)) - 2 * SR
对于无穷强度的情况,即光子数趋近于无穷大时,密钥率可以用连续变量描述,而不再是离散变量。在这种情况下,密钥率可以由以下公式给出:
密钥率 = 1 - H2(QBER) - SR
需要注意的是,以上仅是一些示例计算方式,具体的密钥率计算可能还受到其他因素的影响,如噪声、信道损耗等。此外,密钥率的计算也可能因为具体的实现细节而有所不同。因此,在具体应用中,建议参考相关文献或专业指南以获取更准确的计算方法和公式。
⛄ 部分代码
%% 初始化
clc
clear all
close all
% 协议相关效率
q = 0.5;
% 衰减系数(在1550nm光纤中dB/km)
%% figures
L1 = 1:1:250;
p = ['r','.r';'b','.b';'g','.p'];
% Y_1 figure
%figure
%for i = 1 : size(mu,2)
%L12 = plot(L1,Y_1_inf{1,i},p(i,1));hold on
%L11 = plot(L1,Y_1{1,i},p(i,2));hold on
%L13 = plot(L1,SF_YZL_1{1,i},p(i,3));
%xlabel('Distance (km)');
%ylabel('Y1');
% title('Single Photon response rate')单光子响应率
%end
% e_1 figure
%figure
%for i = 1 : size(mu,2)
% L22 = plot(L1,e_1_inf{1,i},p(i,1));hold on
%L21 = plot(L1,e_1{1,i},p(i,2));hold on
%L23 = plot(L1,SF_eXU_1{1,i},p(i,3));
%xlabel('Distance (km)');
%ylabel('e1');
%end
% title('Single Photon error rate')单光子错误率
% R figure
%figure
%for i = 1 : size(mu,2)
% L32 = semilogy(L1,R_inf{1,i},p(i,1));hold on
%L31 = semilogy(L1,R{1,i},p(i,2));hold on
%L33 = semilogy(L1,SF_R{1,i},p(i,3));
%xlabel('Distance (km)');
%ylabel('Key generation rate');
%end
figure
for i = 1 : size(mu,2)
L32 = semilogy(L1,R_inf{1,i},p(i,1));hold on
xlabel('Distance (km)');
ylabel('Key generation rate');
legend('0.2','0.8','0.5');
%title('不同平均光子数无穷多诱骗态');
end
figure
for i = 1 : size(mu,2)
L31 = semilogy(L1,R{1,i},p(i,2));hold on
xlabel('Distance (km)');
ylabel('Key generation rate');
legend('0.2','0.8','0.5');
%title('不同平均光子数3强度多诱骗态');
end
% %%--------------------------------------------------------------------------------------------
⛄ 运行结果
⛄ 参考文献
[1] 王东.基于参量光源的诱骗态量子密钥分配研究[D].中国科学技术大学,2017.DOI:CNKI:CDMD:1.1017.283250.
[2] 茅晨晨.新型量子密钥分配协议的实际安全性分析及计算[D].南京邮电大学[2023-07-15].