【生产调度】基于遗传算法求解帐篷工序优化安排问题附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥​ 内容介绍

生产调度是现代工业生产中至关重要的一个环节。它涉及到对工序的合理安排,以提高生产效率和降低成本。在生产调度中,帐篷工序优化安排问题是一个常见的挑战。本文将介绍一种基于遗传算法的求解帐篷工序优化安排问题的算法流程。

帐篷工序优化安排问题的目标是找到一种最佳的工序安排方案,以最大程度地提高生产效率。在这个问题中,我们需要考虑多个因素,如工序之间的依赖关系、工序的持续时间和资源的限制等。

遗传算法是一种模拟生物进化过程的优化算法。它模拟了自然选择、交叉和变异等过程,通过不断迭代来寻找最优解。在帐篷工序优化安排问题中,遗传算法可以帮助我们找到最佳的工序安排方案。

下面是基于遗传算法的求解帐篷工序优化安排问题的算法流程:

  1. 初始化种群:随机生成一组初始解作为种a群。每个解表示一种工序安排方案。

  2. 评估适应度:对于每个解,计算其适应度值。适应度值可以根据生产效率、成本等指标来定义。

  3. 选择操作:根据适应度值选择一些优秀的解作为父代。选择操作可以使用轮盘赌选择、锦标赛选择等方法。

  4. 交叉操作:对选出的父代进行交叉操作,生成新的解。交叉操作可以使用单点交叉、多点交叉等方法。

  5. 变异操作:对交叉得到的解进行变异操作,引入新的基因。变异操作可以随机改变解中的某些基因。

  6. 评估适应度:对新生成的解进行适应度评估。

  7. 选择操作:根据适应度值选择一些优秀的解作为下一代种群。

  8. 终止条件判断:判断是否满足终止条件,如达到最大迭代次数或找到满意的解。

  9. 返回最佳解:返回最佳解作为工序优化安排方案。

通过上述算法流程,我们可以不断迭代,逐步优化工序安排方案,直到找到最佳解。遗传算法的优势在于它不依赖于问题的具体特征,适用于各种复杂的优化问题。

总结起来,基于遗传算法的求解帐篷工序优化安排问题的算法流程包括初始化种群、评估适应度、选择操作、交叉操作、变异操作、评估适应度、选择操作、终止条件判断和返回最佳解。通过这个算法流程,我们可以找到最佳的工序安排方案,提高生产效率和降低成本。希望本文对读者在解决类似问题时提供一些帮助。

📣 部分代码

function []=drawrec(order,machine,tstart,tend,mtext)y1=machine-0.2;y2=machine+0.2;x1=tstart;x2=tend;hold on;plot([x1,x1],[y1,y2]);plot([x1,x2],[y2,y2]);plot([x2,x2],[y2,y1]);plot([x2,x1],[y1,y1]);fill([x1,x1,x2,x2],[y1,y2,y2,y1],order);if order==1||order==6    text(x1,0.5*y1+0.5*y2,mtext,'color','w','FontWeight','Bold');else    text(x1,0.5*y1+0.5*y2,mtext,'color','k','FontWeight','Bold');end

⛳️ 运行结果

🔗 参考文献

[1] 王兴林.基于改进量子遗传算法的不确定性生产调度方法研究[D].长沙理工大学,2012.DOI:CNKI:CDMD:2.1012.274030.

[2] 刘倩,杨建平,王柏琳,等.基于"炉-机对应"的炼钢-连铸生产调度问题遗传优化模型[J].工程科学学报, 2020, 42(5):9.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值