✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
随着人工智能技术的不断发展,递归神经网络(RNN)在时间序列预测领域中扮演着越来越重要的角色。而ElLMAN回归预测作为RNN的一种变体,具有很高的预测精度和广泛的应用前景。本文将介绍基于ElLMAN回归预测的方法,并探讨其在时间序列预测中的应用。
首先,让我们简要回顾一下递归神经网络的基本原理。RNN是一种特殊的神经网络结构,它具有循环连接,可以对序列数据进行建模。这种结构使得RNN能够捕捉数据中的时间依赖关系,从而在时间序列预测中表现出色。而ElLMAN回归预测则是RNN的一种典型形式,它采用了ElLMAN结构,通过隐藏层的状态来存储和传递历史信息,从而实现对时间序列数据的建模和预测。
在实际应用中,基于ElLMAN回归预测的方法通常包括以下几个步骤:首先,需要准备好时间序列数据,并对其进行预处理和特征提取。然后,构建ElLMAN回归预测模型,包括输入层、隐藏层和输出层,并选择合适的激活函数和损失函数。接下来,通过训练数据来优化模型参数,通常采用梯度下降等方法。最后,使用训练好的模型对未来的时间序列数据进行预测,并评估预测性能。
在评估预测性能时,通常会使用一些误差指标来衡量模型的准确性,例如均方误差(MSE)、平均绝对误差(MAE)和均方根误差(RMSE)等。这些指标可以帮助我们了解模型的预测精度和稳定性,从而指导我们对模型的改进和优化。
总的来说,基于ElLMAN回归预测的方法在时间序列预测中具有很高的应用价值和发展前景。通过合理的模型设计和参数优化,我们可以利用这种方法来有效地预测各种时间序列数据,为实际应用提供有力的支持。当然,也需要注意到ElLMAN回归预测方法在处理长期依赖和梯度消失等问题上仍然存在一些挑战,需要进一步的研究和改进。
总之,基于递归神经网络ElLMAN回归预测的方法在时间序列预测中具有很高的潜力,可以为各种实际应用提供有效的解决方案。希望本文的介绍能够对相关领域的研究和实践工作有所帮助,也期待未来能够看到更多关于ElLMAN回归预测方法的创新和应用。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 王晓洁.基于Elman递归神经网络的股价的短期预测[J].新乡学院学报, 2016, 33(9):3.
[2] 孟令启,张洛明,韩丽丽,等.基于MATLAB的Elman神经网络在中厚板轧机宽展预测中的应用[C]//第二届中国CAE工程分析技术年会暨2006全国计算机辅助工程(CAE)技术与应用高级研讨会.0[2023-12-08].
[3] 许光斌,刘鱼勇,楼正华.基于Elman神经网络的话务预测[J].移动通信, 2012, 36(009):45-48.DOI:10.3969/j.issn.1006-1010.2012.09.010.