【ElLMAN回归预测】基于递归神经网络ELMAN回归预测(含误差指标)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

随着人工智能技术的不断发展,递归神经网络(RNN)在时间序列预测领域中扮演着越来越重要的角色。而ElLMAN回归预测作为RNN的一种变体,具有很高的预测精度和广泛的应用前景。本文将介绍基于ElLMAN回归预测的方法,并探讨其在时间序列预测中的应用。

首先,让我们简要回顾一下递归神经网络的基本原理。RNN是一种特殊的神经网络结构,它具有循环连接,可以对序列数据进行建模。这种结构使得RNN能够捕捉数据中的时间依赖关系,从而在时间序列预测中表现出色。而ElLMAN回归预测则是RNN的一种典型形式,它采用了ElLMAN结构,通过隐藏层的状态来存储和传递历史信息,从而实现对时间序列数据的建模和预测。

在实际应用中,基于ElLMAN回归预测的方法通常包括以下几个步骤:首先,需要准备好时间序列数据,并对其进行预处理和特征提取。然后,构建ElLMAN回归预测模型,包括输入层、隐藏层和输出层,并选择合适的激活函数和损失函数。接下来,通过训练数据来优化模型参数,通常采用梯度下降等方法。最后,使用训练好的模型对未来的时间序列数据进行预测,并评估预测性能。

在评估预测性能时,通常会使用一些误差指标来衡量模型的准确性,例如均方误差(MSE)、平均绝对误差(MAE)和均方根误差(RMSE)等。这些指标可以帮助我们了解模型的预测精度和稳定性,从而指导我们对模型的改进和优化。

总的来说,基于ElLMAN回归预测的方法在时间序列预测中具有很高的应用价值和发展前景。通过合理的模型设计和参数优化,我们可以利用这种方法来有效地预测各种时间序列数据,为实际应用提供有力的支持。当然,也需要注意到ElLMAN回归预测方法在处理长期依赖和梯度消失等问题上仍然存在一些挑战,需要进一步的研究和改进。

总之,基于递归神经网络ElLMAN回归预测的方法在时间序列预测中具有很高的潜力,可以为各种实际应用提供有效的解决方案。希望本文的介绍能够对相关领域的研究和实践工作有所帮助,也期待未来能够看到更多关于ElLMAN回归预测方法的创新和应用。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 王晓洁.基于Elman递归神经网络的股价的短期预测[J].新乡学院学报, 2016, 33(9):3.

[2] 孟令启,张洛明,韩丽丽,等.基于MATLAB的Elman神经网络在中厚板轧机宽展预测中的应用[C]//第二届中国CAE工程分析技术年会暨2006全国计算机辅助工程(CAE)技术与应用高级研讨会.0[2023-12-08].

[3] 许光斌,刘鱼勇,楼正华.基于Elman神经网络的话务预测[J].移动通信, 2012, 36(009):45-48.DOI:10.3969/j.issn.1006-1010.2012.09.010.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值