✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
风电作为一种清洁可再生能源,在应对气候变化和能源转型中发挥着重要作用。准确预测风电输出对于电网稳定运行和可再生能源消纳至关重要。本文提出了一种基于变分模态分解(VMD)结合蜣螂算法(DBO)优化长短记忆神经网络(LSTM)的风电数据预测方法(VMD-DBO-LSTM)。该方法首先利用VMD将风电时间序列分解为多个内在模态函数(IMF),然后采用DBO优化LSTM模型的超参数,最后利用优化后的LSTM模型对风电数据进行预测。
引言
风电具有间歇性和波动性,准确预测风电输出对于电网稳定运行和可再生能源消纳至关重要。近年来,基于机器学习的风电预测方法得到了广泛的研究。长短记忆神经网络(LSTM)是一种循环神经网络,可以有效捕捉时间序列数据的长期依赖关系,因此被广泛应用于风电预测。
然而,LSTM模型的预测精度受超参数设置的影响很大。传统的超参数优化方法,如网格搜索和随机搜索,效率低且容易陷入局部最优。蜣螂算法(DBO)是一种新型的元启发式算法,具有较强的全局搜索能力和收敛速度。
方法
本文提出的VMD-DBO-LSTM风电数据预测方法包括以下步骤:
-
变分模态分解(VMD):将风电时间序列分解为多个内在模态函数(IMF)。IMF可以反映风电数据中不同频率和时间尺度的成分。
-
蜣螂算法(DBO)优化LSTM超参数:利用DBO优化LSTM模型的超参数,包括学习率、隐藏层节点数和训练轮数。DBO通过模拟蜣螂滚动粪球的行为,实现对最优解的搜索。
-
LSTM模型训练和预测:利用优化后的LSTM模型对风电数据进行训练和预测。LSTM模型通过学习IMF序列之间的关系,捕捉风电数据的长期依赖关系。
实验结果
本文使用实际风电场数据对VMD-DBO-LSTM方法进行了实验验证。实验结果表明,与传统的LSTM模型和基于其他元启发式算法优化LSTM模型的方法相比,VMD-DBO-LSTM方法具有更高的预测精度和鲁棒性。
结论
本文提出的VMD-DBO-LSTM风电数据预测方法将变分模态分解与蜣螂算法相结合,有效提高了LSTM模型的预测精度。该方法可以为风电场运营和电网调度提供有价值的信息,有助于提高可再生能源的消纳和电网的稳定运行。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类