✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
1. 概述
水面船舶的三自由度运动是指船舶在风浪流作用下的纵荡、横摇和垂荡运动。准确模拟船舶的三自由度运动对于评估船舶的航行安全、操纵性能和舒适性至关重要。近年来,随着计算机技术的发展,基于风浪流模型的水面船舶三自由度运动仿真技术得到了快速发展,并逐渐成为船舶设计和研究的重要工具。
2. 风浪流模型
风浪流模型是描述风、浪和流对船舶运动影响的数学模型。常用的风浪流模型包括:
-
风模型: 常用的风模型包括静止风模型和动态风模型。静止风模型假设风速和风向恒定,而动态风模型则考虑风速和风向随时间变化的影响。
-
浪模型: 常用的浪模型包括正弦浪模型、谱浪模型和随机浪模型。正弦浪模型假设浪高和周期恒定,而谱浪模型和随机浪模型则考虑浪高和周期随时间变化的影响。
-
流模型: 常用的流模型包括定常流模型和非定常流模型。定常流模型假设流速和流向恒定,而非定常流模型则考虑流速和流向随时间变化的影响。
3. 水面船舶三自由度运动方程
水面船舶的三自由度运动方程描述了船舶在风浪流作用下的运动状态。常用的三自由度运动方程包括:
-
纵荡运动方程: 描述船舶在纵向上的运动,包括船速、纵倾角和纵向加速度。
-
横摇运动方程: 描述船舶在横向上的运动,包括横摇角和横摇角速度。
-
垂荡运动方程: 描述船舶在垂向上的运动,包括垂荡位移和垂荡速度。
4. 仿真方法
基于风浪流模型的水面船舶三自由度运动仿真方法主要包括以下步骤:
-
建立船舶模型: 根据船舶的几何形状、质量分布和水动力特性建立船舶模型。
-
建立风浪流模型: 选择合适的风浪流模型,并根据实际情况设置风浪流参数。
-
求解运动方程: 利用数值方法求解船舶的三自由度运动方程,得到船舶在风浪流作用下的运动轨迹。
-
分析仿真结果: 对仿真结果进行分析,评估船舶的航行安全、操纵性能和舒适性。
5. 应用
基于风浪流模型的水面船舶三自由度运动仿真技术已广泛应用于以下领域:
-
船舶设计: 评估船舶的航行安全和操纵性能,优化船舶的设计方案。
-
船舶研究: 研究船舶在风浪流作用下的运动规律,为船舶的改进和优化提供理论依据。
-
航海训练: 模拟真实的海况,为船员提供航海训练平台。
6. 总结
基于风浪流模型的水面船舶三自由度运动仿真技术是船舶设计和研究的重要工具。该技术可以准确模拟船舶在风浪流作用下的运动状态,为评估船舶的航行安全、操纵性能和舒适性提供可靠的依据。随着计算机技术的发展,该技术将得到进一步发展和应用。
⛳️ 运行结果
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
kim = 15; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%% 数据集分析
outdim = 1; % 输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
🔗 参考文献
[1] 陈一凡.基于CFD的船舶水动力计算及操纵运动仿真[D].大连海事大学,2017.
[2] 田超.风浪流作用下船舶操纵运动的仿真计算[D].武汉理工大学,2003.DOI:10.7666/d.y519207.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类