【信号去噪】基于改进小波阈值去噪的表面肌电信号动态分析附matlab复现

本文提出了一种改进的小波阈值去噪技术,通过调整阈值函数和选择策略,有效去除sEMG信号中的噪声,提高信噪比和信号质量,适用于动态分析和肌肉功能评估。实验结果显示,新方法在多类信号去噪中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

表面肌电信号 (sEMG) 由于其低信号能量、宽频率分布和固有的噪声干扰,在动态分析和后续肌肉运动检查方面存在重大挑战。传统的基于小波阈值的 sEMG 信号滤波技术存在吉布斯现象和信号幅度整体下降的问题,导致信号失真。本文旨在建立一种改进的小波阈值方法,通过调整两个独立因素,可以滤除各种类型的信号,特别是 sEMG 信号。因此,它生成具有更高信噪比 (SNR)、更低均方误差 (MSE) 和更好信号质量的滤波信号。在对多普勒信号和 Heavysine 信号进行去噪后,滤波信号的 SNR 和 MSE 均高于传统滤波算法生成的信号。滤波后的 sEMG 信号具有更低的噪声基线,同时保留了峰值 sEMG 信号强度。

1. 引言

表面肌电信号 (sEMG) 是由肌肉活动产生的生物电信号,广泛应用于运动控制、康复医学和人机交互等领域。sEMG 信号的动态分析对于理解肌肉运动机制和评估肌肉功能至关重要。然而,sEMG 信号的低信噪比和复杂频谱特性给其动态分析带来了挑战。

传统的 sEMG 信号滤波方法主要包括线性滤波和非线性滤波。线性滤波方法,如巴特沃斯滤波器和切比雪夫滤波器,虽然可以有效地滤除特定频率范围的噪声,但也会导致信号失真。非线性滤波方法,如小波阈值去噪,可以更好地保留信号细节,但其去噪效果受阈值选择的影响较大。

近年来,基于改进小波阈值去噪的方法受到了广泛关注。这些方法通过调整阈值函数或阈值选择策略,可以提高去噪效果,并降低信号失真。

2. 改进的小波阈值去噪方法

本文提出了一种改进的小波阈值去噪方法,该方法通过调整两个独立因素来提高去噪效果:

  • 阈值函数的选择: 传统的软阈值函数和硬阈值函数存在一定的局限性。软阈值函数会导致信号幅度下降,而硬阈值函数会导致信号失真。本文采用改进的软阈值函数,该函数可以更好地保留信号细节,同时降低信号失真。

  • 阈值的选择策略: 传统的阈值选择策略,如固定阈值和全局阈值,无法适应不同类型的信号。本文采用自适应阈值选择策略,该策略可以根据信号的局部特征选择合适的阈值,从而提高去噪效果。

3. 实验结果与分析

为了验证改进的小波阈值去噪方法的有效性,本文对多普勒信号、Heavysine 信号和 sEMG 信号进行了去噪实验。实验结果表明,改进的小波阈值去噪方法可以有效地滤除噪声,提高信噪比,降低均方误差,并保留信号细节。

4. 结论

本文提出了一种改进的小波阈值去噪方法,该方法可以有效地滤除 sEMG 信号中的噪声,提高信噪比,降低均方误差,并保留信号细节。该方法可以应用于 sEMG 信号的动态分析,为肌肉运动机制和肌肉功能评估提供更准确的依据。

⛳️ 运行结果

🔗 参考文献

 [1] Ouyang C , Cai L , Liu B ,et al.An improved wavelet threshold denoising approach for surface electromyography signal[J].EURASIP Journal on Advances in Signal Processing, 2023, 2023(1).DOI:10.1186/s13634-023-01066-3.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值