✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
表面肌电信号 (sEMG) 由于其低信号能量、宽频率分布和固有的噪声干扰,在动态分析和后续肌肉运动检查方面存在重大挑战。传统的基于小波阈值的 sEMG 信号滤波技术存在吉布斯现象和信号幅度整体下降的问题,导致信号失真。本文旨在建立一种改进的小波阈值方法,通过调整两个独立因素,可以滤除各种类型的信号,特别是 sEMG 信号。因此,它生成具有更高信噪比 (SNR)、更低均方误差 (MSE) 和更好信号质量的滤波信号。在对多普勒信号和 Heavysine 信号进行去噪后,滤波信号的 SNR 和 MSE 均高于传统滤波算法生成的信号。滤波后的 sEMG 信号具有更低的噪声基线,同时保留了峰值 sEMG 信号强度。
1. 引言
表面肌电信号 (sEMG) 是由肌肉活动产生的生物电信号,广泛应用于运动控制、康复医学和人机交互等领域。sEMG 信号的动态分析对于理解肌肉运动机制和评估肌肉功能至关重要。然而,sEMG 信号的低信噪比和复杂频谱特性给其动态分析带来了挑战。
传统的 sEMG 信号滤波方法主要包括线性滤波和非线性滤波。线性滤波方法,如巴特沃斯滤波器和切比雪夫滤波器,虽然可以有效地滤除特定频率范围的噪声,但也会导致信号失真。非线性滤波方法,如小波阈值去噪,可以更好地保留信号细节,但其去噪效果受阈值选择的影响较大。
近年来,基于改进小波阈值去噪的方法受到了广泛关注。这些方法通过调整阈值函数或阈值选择策略,可以提高去噪效果,并降低信号失真。
2. 改进的小波阈值去噪方法
本文提出了一种改进的小波阈值去噪方法,该方法通过调整两个独立因素来提高去噪效果:
-
阈值函数的选择: 传统的软阈值函数和硬阈值函数存在一定的局限性。软阈值函数会导致信号幅度下降,而硬阈值函数会导致信号失真。本文采用改进的软阈值函数,该函数可以更好地保留信号细节,同时降低信号失真。
-
阈值的选择策略: 传统的阈值选择策略,如固定阈值和全局阈值,无法适应不同类型的信号。本文采用自适应阈值选择策略,该策略可以根据信号的局部特征选择合适的阈值,从而提高去噪效果。
3. 实验结果与分析
为了验证改进的小波阈值去噪方法的有效性,本文对多普勒信号、Heavysine 信号和 sEMG 信号进行了去噪实验。实验结果表明,改进的小波阈值去噪方法可以有效地滤除噪声,提高信噪比,降低均方误差,并保留信号细节。
4. 结论
本文提出了一种改进的小波阈值去噪方法,该方法可以有效地滤除 sEMG 信号中的噪声,提高信噪比,降低均方误差,并保留信号细节。该方法可以应用于 sEMG 信号的动态分析,为肌肉运动机制和肌肉功能评估提供更准确的依据。
⛳️ 运行结果
🔗 参考文献
[1] Ouyang C , Cai L , Liu B ,et al.An improved wavelet threshold denoising approach for surface electromyography signal[J].EURASIP Journal on Advances in Signal Processing, 2023, 2023(1).DOI:10.1186/s13634-023-01066-3.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类