✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在室内环境中,利用四个固定基站对无人机飞行过程中的距离和高度进行测量,并通过简单的几何定位方法实现二维/三维定位解算,进而进行粗差剔除和无人机飞行可视化。
本文针对室内单层无人机飞行过程,重点分析了二维几何定位与三维几何定位的差异以及各自的优劣性。
一、二维几何定位
二维几何定位中,由于考虑了室内单层无人机飞行高度变化较小的特点,忽略了高度信息,模型自由度为2,仅需估计东向坐标E和北向坐标N。
二、三维几何定位
三维几何定位利用四个基站建立四个方程,但考虑到单层飞行高度变化不大的特性,额外添加一个高度约束方程,共计五个方程。为了解决基站测距设备偏差问题,引入偏差参数b。因此,三维定位需要估计北向坐标N、东向坐标E、高度坐标U以及偏差参数b,模型自由度为1。
三、定位精度对比
通过最小二乘法解算结果,并分析DOP值以及可视化无人机轨迹,发现二维定位解算精度明显高于三维定位解算精度。
在高度方向,除了无人机起飞阶段高度变化明显外,在飞行稳定后,高度变化并不大。这导致了设计矩阵的几何结构较差,影响了三维定位的精度。
四、结论
针对室内单层无人机飞行场景,二维几何定位方法在精度方面具有显著优势。其原因主要在于:
-
二维定位模型更符合实际情况,避免了不必要的参数估计,减少了误差累积。
-
三维定位由于高度信息较少,设计矩阵几何结构较差,导致解算精度降低。
因此,在室内单层无人机定位中,优先采用二维几何定位方法,可以获得更高精度和更稳定的定位结果。
五、未来研究方向
-
进一步研究不同环境下,二维/三维定位方法的适用性。
-
开发更先进的定位算法,提高定位精度和鲁棒性。
-
将定位技术与其他技术结合,例如SLAM,实现更精准的室内导航和地图构建。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类