【雷达】基于遗传算法求解天线振源位置分布优化问题,含阵元位置 均匀圆阵峰值旁瓣电平附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

天线阵列的性能很大程度上取决于振源的位置分布,而优化振源位置分布可以有效提升天线性能,例如降低旁瓣电平、提高方向图的指向性等。本文以均匀圆阵为例,探讨了利用遗传算法求解天线振源位置分布优化问题的方案。首先,介绍了遗传算法的基本原理及其在电磁优化问题中的应用优势。其次,建立了基于均匀圆阵峰值旁瓣电平的优化目标函数,并结合遗传算法的流程,详细阐述了优化算法的步骤。最后,通过仿真实验验证了该算法的有效性,并分析了不同参数对优化结果的影响。

关键词: 天线阵列,遗传算法,振源位置优化,均匀圆阵,峰值旁瓣电平

1. 引言

随着无线通信技术的快速发展,天线阵列的应用越来越广泛。天线阵列能够通过多个辐射单元协同工作,实现诸如波束赋形、空间滤波等功能,从而提升通信系统的性能。然而,天线阵列的性能很大程度上取决于振源的位置分布。合理的振源位置分布可以有效提高天线的方向性、降低旁瓣电平、提升信噪比等性能指标。

传统的优化方法,如梯度下降法、牛顿法等,容易陷入局部最优解,难以找到全局最优解。而遗传算法是一种全局搜索算法,能够有效地克服局部最优解问题,并具有较强的鲁棒性,因此在电磁优化问题中得到了广泛应用。

本文以均匀圆阵为例,探讨了利用遗传算法求解天线振源位置分布优化问题。通过优化振源位置,降低了峰值旁瓣电平,提升了天线的方向性,为实际应用提供了参考。

2. 遗传算法基本原理

遗传算法是一种模拟生物进化过程的随机搜索算法,其基本原理如下:

  • 种群初始化: 随机生成一组初始解,称为种群。每个解代表一个潜在的解决方案,被称为个体。

  • 适应度评估: 根据预设的优化目标函数,评估每个个体的适应度,即每个个体对目标函数的贡献程度。

  • 选择操作: 根据适应度的大小,选择优良个体进入下一代。

  • 交叉操作: 将两个父代个体的一部分基因进行交换,生成新的子代个体。

  • 变异操作: 对个体的基因进行随机改变,引入新的遗传信息。

通过不断重复上述步骤,遗传算法逐渐优化种群,最终找到接近全局最优解的个体。

3. 天线振源位置优化问题

本文以均匀圆阵为例,探讨了优化振源位置分布,降低峰值旁瓣电平的问题。假设天线阵列为N个振源组成的圆形阵列,阵元均匀分布在圆周上,每个振源的辐射功率相同,相位可控。优化目标是找到一组振源位置,使天线的峰值旁瓣电平最小。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值