✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
天线阵列的性能很大程度上取决于振源的位置分布,而优化振源位置分布可以有效提升天线性能,例如降低旁瓣电平、提高方向图的指向性等。本文以均匀圆阵为例,探讨了利用遗传算法求解天线振源位置分布优化问题的方案。首先,介绍了遗传算法的基本原理及其在电磁优化问题中的应用优势。其次,建立了基于均匀圆阵峰值旁瓣电平的优化目标函数,并结合遗传算法的流程,详细阐述了优化算法的步骤。最后,通过仿真实验验证了该算法的有效性,并分析了不同参数对优化结果的影响。
关键词: 天线阵列,遗传算法,振源位置优化,均匀圆阵,峰值旁瓣电平
1. 引言
随着无线通信技术的快速发展,天线阵列的应用越来越广泛。天线阵列能够通过多个辐射单元协同工作,实现诸如波束赋形、空间滤波等功能,从而提升通信系统的性能。然而,天线阵列的性能很大程度上取决于振源的位置分布。合理的振源位置分布可以有效提高天线的方向性、降低旁瓣电平、提升信噪比等性能指标。
传统的优化方法,如梯度下降法、牛顿法等,容易陷入局部最优解,难以找到全局最优解。而遗传算法是一种全局搜索算法,能够有效地克服局部最优解问题,并具有较强的鲁棒性,因此在电磁优化问题中得到了广泛应用。
本文以均匀圆阵为例,探讨了利用遗传算法求解天线振源位置分布优化问题。通过优化振源位置,降低了峰值旁瓣电平,提升了天线的方向性,为实际应用提供了参考。
2. 遗传算法基本原理
遗传算法是一种模拟生物进化过程的随机搜索算法,其基本原理如下:
-
种群初始化: 随机生成一组初始解,称为种群。每个解代表一个潜在的解决方案,被称为个体。
-
适应度评估: 根据预设的优化目标函数,评估每个个体的适应度,即每个个体对目标函数的贡献程度。
-
选择操作: 根据适应度的大小,选择优良个体进入下一代。
-
交叉操作: 将两个父代个体的一部分基因进行交换,生成新的子代个体。
-
变异操作: 对个体的基因进行随机改变,引入新的遗传信息。
通过不断重复上述步骤,遗传算法逐渐优化种群,最终找到接近全局最优解的个体。
3. 天线振源位置优化问题
本文以均匀圆阵为例,探讨了优化振源位置分布,降低峰值旁瓣电平的问题。假设天线阵列为N个振源组成的圆形阵列,阵元均匀分布在圆周上,每个振源的辐射功率相同,相位可控。优化目标是找到一组振源位置,使天线的峰值旁瓣电平最小。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类