✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
盖驱动腔流作为计算流体力学领域中最常被求解的问题之一,一直以来都被用作测试不可压缩粘性流体流动内部代码的基准问题。本文将深入探讨该问题的数值求解方法,并重点介绍基于 Crank-Nicolson/Adams-Bashforth 格式的数值方案,以及空间离散化所采用的二阶中心差分格式。
数值方案: 本文采用 Crank-Nicolson/Adams-Bashforth 格式对粘性项和对流项进行时间离散化。Crank-Nicolson 格式是一种隐式二阶精度方法,它在时间上对粘性项进行平均,从而提高了数值稳定性。Adams-Bashforth 格式是一种显式二阶精度方法,它使用前两个时间步长的值来逼近当前时间步的导数,具有较高的计算效率。
对于空间离散化,本文采用二阶中心差分格式,并使用交错网格。交错网格将速度和压力的节点交错排列,从而避免了压力-速度耦合带来的数值不稳定性。此外,本文还采用了投影方法来求解不可压缩 Navier-Stokes 方程,该方法将速度和压力的计算解耦。
投影方法: 投影方法的中心思想是将速度场分解成两个部分:一个满足不可压缩条件的速度场,另一个满足动量方程的速度场。通过对动量方程进行时间离散化,我们可以得到一个关于速度场的中间结果,该结果不一定满足不可压缩条件。为了使速度场满足不可压缩条件,需要对该中间结果进行投影。投影操作实际上是通过解一个泊松方程来计算压力场,并使用该压力场来修正速度场。
数值结果: 使用上述方法进行数值模拟,可以得到盖驱动腔流的流动特征,包括速度场、压力场和涡量场。数值结果表明,随着雷诺数的增加,流动逐渐变得更加复杂,出现涡旋和回流现象。
总结: 本文介绍了利用 Crank-Nicolson/Adams-Bashforth 格式、二阶中心差分格式和投影方法求解盖驱动腔流问题的数值方案。该方法具有较高的精度和稳定性,并能有效地模拟盖驱动腔流的流动特征。盖驱动腔流作为计算流体力学领域中的一个经典基准问题,其数值求解方法和结果具有广泛的应用价值,可以为其他复杂流体流动问题的数值模拟提供参考和借鉴。
未来展望: 虽然本文的方法已经能够较好地模拟盖驱动腔流,但仍存在一些改进的空间。例如,可以尝试使用更高阶的差分格式或有限元方法来提高空间离散化的精度;也可以采用更复杂的湍流模型来模拟高雷诺数下的流动。此外,可以将该方法应用于更复杂的几何形状和边界条件下的流动问题,以进一步提高其应用价值。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类