✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
近年来,多变量回归预测在各个领域中得到广泛应用,例如金融、能源、气象等。然而,传统的回归模型往往难以处理高维、非线性、时序等复杂数据,导致预测精度有限。为了克服这些挑战,本文提出了一种基于秃鹰优化算法(BES)、Transformer和长短期记忆网络(LSTM)的多变量回归预测模型,并使用Matlab进行实现。该模型通过BES优化算法对Transformer和LSTM的参数进行全局寻优,利用Transformer的强大特征提取能力,以及LSTM的时序建模能力,有效地提高了多变量回归预测的精度。
1. 问题概述
多变量回归预测旨在从多个自变量预测目标变量的值。在实际应用中,多变量回归模型需要处理多种类型的输入数据,例如:
-
高维数据:特征数量较多,增加了模型训练的难度。
-
非线性数据:数据关系非线性,传统的线性模型无法准确捕捉。
-
时序数据:数据存在时间依赖性,需要考虑过去数据的影响。
传统的多变量回归模型,例如线性回归、支持向量机等,在处理上述问题时存在局限性。为了克服这些挑战,近年来出现了许多新的方法,例如深度学习、进化算法等。
2. 模型框架
本文提出的模型框架如图1所示,包含三个主要模块:
-
秃鹰优化算法 (BES): 用于优化模型参数,提高模型精度。
-
Transformer: 用于提取输入数据的特征,提高模型的泛化能力。
-
长短期记忆网络 (LSTM): 用于学习数据之间的时序依赖关系,提高模型的预测精度。
3. 模型实现
3.1 秃鹰优化算法 (BES)
BES是一种新型的群智能优化算法,具有全局寻优能力强、收敛速度快等优点。BES算法通过模拟秃鹰捕猎的过程,优化模型参数。
3.2 Transformer
Transformer是一种基于注意力机制的深度学习模型,在自然语言处理领域取得了巨大成功。Transformer通过自注意力机制,有效地捕捉了数据之间的长距离依赖关系,提高了特征提取能力。
3.3 长短期记忆网络 (LSTM)
LSTM是一种特殊的循环神经网络,能够有效地处理时序数据。LSTM通过门控机制,可以有效地解决梯度消失问题,提高模型的学习能力。
4. 实验结果
本文使用多个公开数据集进行实验,并将模型与其他方法进行比较,结果表明:
-
本文提出的模型在各个数据集上都取得了显著的性能提升,证明了模型的有效性。
-
与其他方法相比,本文模型的预测精度更高,收敛速度更快。
5. 总结与展望
本文提出了一种基于BES、Transformer和LSTM的多变量回归预测模型,并使用Matlab进行实现。该模型有效地提高了多变量回归预测的精度,并具有良好的可解释性。未来,我们将进一步研究以下方面:
-
将模型应用于更多实际应用场景,验证其泛化能力。
-
探索更有效的参数优化方法,进一步提高模型精度。
-
研究模型的鲁棒性,提高其对噪声数据的抗干扰能力。
⛳️ 运行结果
📣 部分代码
%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 2; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类