✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗 :Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
信号分解是信号处理领域的一个重要研究方向,其目标是将复杂信号分解为多个简单且具有物理意义的成分。近年来,基于经验模态分解(EMD)及其变体方法在信号分解方面取得了显著进展,但这些方法在处理多变量非平稳信号时存在一些局限性。为了克服这些局限性,本文提出了一种基于多变量跳加AM-FM模式分解(MJMDD)的新方法,该方法能够有效地将多变量非平稳信号分解为多个具有不同频率和振幅的AM-FM分量。本文详细介绍了MJMDD方法的原理和算法步骤,并提供了相应的Matlab代码示例。
1. 引言
信号分解技术在各个领域都具有广泛的应用,例如故障诊断、图像处理、语音识别等。传统信号分解方法主要包括傅里叶变换、小波变换等,这些方法在处理平稳信号时比较有效,但对于非平稳信号,其分解效果往往不理想。
近年来,基于EMD的信号分解方法引起了广泛关注。EMD方法通过提取信号的固有模态函数(IMF)来进行信号分解,能够有效地处理非平稳信号。然而,EMD方法也存在一些缺点,例如:
-
对噪声敏感;
-
对信号的局部特征识别能力有限;
-
在处理多变量信号时,无法有效地提取各变量之间的耦合信息。
为了克服EMD方法的这些缺点,学者们提出了各种改进方法,例如集合经验模态分解(EEMD)、自适应噪声完备EMD(CEEMDAN)等。但这些方法仍然存在一些局限性,例如计算复杂度高、分解结果不稳定等。
2. 多变量跳加AM-FM模式分解(MJMDD)
为了克服现有信号分解方法的局限性,本文提出了一种基于MJMDD的新方法。该方法将多变量信号分解为多个具有不同频率和振幅的AM-FM分量,能够有效地处理多变量非平稳信号。
2.1 方法原理
MJMDD方法的基本原理是:将多变量信号视为多个具有不同频率和振幅的AM-FM分量的叠加,然后利用迭代的跳加算法来提取各个分量。
2.2 算法步骤
MJMDD方法的算法步骤如下:
-
初始化:设定初始频率范围和跳加步长。
-
跳加操作:根据初始频率范围,对每个变量进行跳加操作,得到一组新的信号。
-
AM-FM模式提取:对每个变量的跳加信号进行AM-FM模式提取,得到各个分量的振幅和相位。
-
迭代:重复步骤2和步骤3,直到各个分量的频率和振幅不再发生明显变化。
-
输出:最终得到多变量信号的各个AM-FM分量。
3. Matlab代码示例
以下是用Matlab实现MJMDD方法的代码示例:[A(:, i), phi(:, i)] = amfm_extract(X_hop(:, j), fs);
end
end
% 输出结果
end
function [a, phi] = amfm_extract(x, fs)
% amfm_extract - AM-FM模式提取
%
% 输入参数:
% x - 单变量信号
% fs - 采样频率
%
% 输出参数:
% a - 振幅
% phi - 相位
% 使用希尔伯特变换提取相位
phi = angle(hilbert(x));
% 使用移动平均滤波器平滑相位
phi = movmean(phi, 5);
% 计算频率
f = diff(phi) / (2 * pi / fs);
% 使用移动平均滤波器平滑频率
f = movmean(f, 5);
% 积分频率得到相位
phi = cumsum(f) * (2 * pi / fs);
% 计算振幅
a = abs(x .* exp(-1i * phi));
end
4. 结论
本文提出了一种基于MJMDD的新方法,该方法能够有效地将多变量非平稳信号分解为多个具有不同频率和振幅的AM-FM分量。MJMDD方法克服了传统信号分解方法的局限性,具有以下优点:
-
能够有效地处理多变量非平稳信号;
-
分解结果稳定,不易受噪声影响;
-
计算复杂度较低。
MJMDD方法在故障诊断、图像处理、语音识别等领域具有广阔的应用前景。未来研究方向包括:进一步提高MJMDD方法的抗噪性能;研究MJMDD方法在不同应用领域中的应用效果。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类