【OFDM仿真】不同配置的OFDM系统仿真(含编码器无码、重复码 调制:QPSK、16QAM FFT)Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 正交频分复用(OFDM)技术因其高效的频谱利用率和抗多径衰落的能力,广泛应用于现代无线通信系统。本文通过仿真实验,研究了不同OFDM系统配置参数对系统性能的影响。具体而言,我们将考察三种编码方案(无编码、重复码)、两种调制方式(QPSK、16QAM)以及不同FFT大小对系统误码率(BER)和信噪比(SNR)性能的影响。实验结果表明,合理的系统配置能够显著提升OFDM系统的性能,为实际系统设计提供参考。

1. 引言

OFDM技术通过将高速数据流分割成多个低速子载波进行并行传输,有效地克服了多径衰落带来的码间干扰(ISI)。其核心思想在于利用正交的子载波进行调制,在接收端通过FFT将各个子载波解调出来,从而实现高速数据传输。然而,OFDM系统的性能受诸多因素影响,例如编码方式、调制方式、FFT大小以及信道条件等。因此,深入研究不同配置参数对系统性能的影响至关重要。本文将通过仿真实验,分析不同编码方案(无编码、重复码)、调制方式(QPSK、16QAM)以及FFT大小对OFDM系统BER和SNR性能的影响,为OFDM系统的设计和优化提供理论依据。

2. OFDM系统模型及仿真参数

本文的OFDM系统仿真模型主要包括以下模块:

  • 数据源: 产生随机比特序列作为输入数据。

  • 编码器: 采用无编码和重复码两种方案。重复码通过对输入数据进行简单的重复编码来提高系统的抗干扰能力。

  • 调制器: 采用QPSK和16QAM两种调制方式。QPSK具有较好的抗噪声能力,而16QAM能够提高频谱效率。

  • 串并转换: 将串行数据转换为并行数据,分配到各个子载波上。

  • IFFT: 进行逆快速傅里叶变换,将并行数据转换为时域信号。

  • 循环前缀(CP): 在时域信号的头部添加循环前缀,以消除码间干扰。

  • 信道: 采用瑞利衰落信道模型模拟多径传播环境,并可根据需要调整信道参数,例如多径数、多径时延等。

  • 信道均衡: 采用最小均方误差(MMSE)均衡器来补偿信道引起的衰落和干扰。

  • FFT: 进行快速傅里叶变换,将接收信号变换到频域。

  • 解调器: 根据选择的调制方式进行解调。

  • 解码器: 根据选择的编码方式进行解码。

  • 误码率计算: 计算系统误码率(BER)。

仿真参数如下:

  • 子载波数量: 根据不同的FFT大小而定 (例如: 64, 128, 256)。

  • 循环前缀长度: 通常设置为子载波数量的1/4。

  • 信道模型: 瑞利衰落信道。

  • SNR范围: 从-5dB到20dB,步长为1dB。

  • 仿真次数: 每次仿真运行足够多的次数,以保证结果的统计可靠性。

3. 仿真结果与分析

通过Matlab等仿真工具,我们进行了大量的仿真实验,分别对不同编码方式、调制方式和FFT大小下的OFDM系统性能进行评估。

(1) 编码方式的影响: 实验结果表明,在相同的SNR下,采用重复码的OFDM系统比无编码系统具有更低的BER。这是因为重复码增加了数据的冗余度,提高了系统的抗干扰能力。然而,重复码也降低了系统的频谱效率。

(2) 调制方式的影响: 16QAM调制方式比QPSK调制方式具有更高的频谱效率,但其抗噪声能力较弱。在相同的SNR下,16QAM系统的BER高于QPSK系统。在高SNR条件下,16QAM的性能优势更加明显,因为此时噪声的影响相对较小。

(3) FFT大小的影响: FFT大小决定了子载波的数量,从而影响系统的频谱效率和抗多径衰落的能力。较大的FFT大小能够提供更高的频谱效率,但也增加了计算复杂度。实验结果显示,在相同的SNR和调制方式下,较大的FFT大小通常能够获得更低的BER,但提升效果会随着SNR的提高而逐渐减弱。

4. 结论

本文通过仿真实验,研究了不同OFDM系统配置参数对系统性能的影响。结果表明,编码方式、调制方式和FFT大小对OFDM系统的BER性能具有显著影响。选择合适的编码方式、调制方式和FFT大小能够有效地提升OFDM系统的性能。在实际系统设计中,需要根据具体的应用场景和性能需求,权衡各种因素,选择最佳的系统配置。例如,在对数据可靠性要求较高的场景中,可以选择重复码和QPSK调制方式;在对频谱效率要求较高的场景中,可以选择无编码或低冗余编码和16QAM调制方式,并选择合适的FFT大小以平衡性能和复杂度。未来的研究可以进一步考虑更复杂的信道模型、更高级的编码方案以及更有效的均衡算法,以进一步优化OFDM系统的性能。

📣 部分代码

OFDM_SYM_nocode      = [];   % the OFDM symblos for no code

OFDM_SYM             = [];   % The OFDM symbols for code

QAM_code_ifft_CYC   = [];   % the output from the cyclic extension

QAM_nocode_ifft_CYC = [];

Receivied = [];              % the recevied data at the receiver

BER_QAM_nocode = [];        %QPSK BER NO CODE

BER_QAM_code   = [];        %QPSK BER coded

NO_OF_BITS_nocode=256;       %256 bits will be generated for no code

NO_OF_BITS_code=85;          %85 bits will be generated for coded to be 255

for x1 = 1:L

    information_bits1 = randi([0, 1], 1, NO_OF_BITS_nocode);

    information_bits2 = randi([0, 1], 1, NO_OF_BITS_code);

    NoCode_Bits=information_bits1;

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值