【热力学】基于FVM和简单的层流加热通道流附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab代码及仿真咨询内容点击👇

🔥 内容介绍

热力学是研究能量转换和传递规律的科学,在工程领域中扮演着至关重要的角色。流体流动过程中的热力学现象,例如加热、冷却和相变,广泛存在于各种工业应用中,如热交换器、冷却系统和反应器。精确模拟和理解这些现象,对于优化设备性能、提高能源效率和保障安全运行至关重要。

本文将探讨如何利用有限体积法(FVM)模拟简单的层流加热通道中的热力学行为。我们将重点关注以下几个方面:首先,阐述有限体积法的基本原理和适用性;其次,描述层流加热通道的物理模型和数学模型;最后,讨论如何利用FVM离散控制方程,并分析数值模拟结果,以深入了解通道内的温度分布和热力学参数。

1. 有限体积法的基本原理

有限体积法是一种基于积分形式的数值求解方法,广泛应用于计算流体动力学(CFD)领域。与有限差分法和有限元法不同,FVM的核心思想是直接在控制体积上进行积分,并满足积分守恒定律。这意味着在每个控制体积内,质量、动量和能量等物理量的守恒性都得到严格保证。

FVM的具体步骤包括:

  • 网格划分: 将计算域划分为若干个不重叠的控制体积,每个控制体积代表一个离散的计算单元。网格的质量直接影响计算精度和稳定性,因此需要根据具体问题选择合适的网格类型和密度。

  • 控制方程的积分: 对控制方程(例如Navier-Stokes方程和能量方程)在每个控制体积上进行积分,利用高斯散度定理将体积分转化为面积分。

  • 离散格式的应用: 对面积分中的变量进行离散,采用合适的插值方案,例如中心差分格式、迎风格式或混合格式,将积分方程转化为代数方程。

  • 代数方程组的求解: 将所有控制体积的代数方程组联立,形成一个大型的线性或非线性方程组。采用迭代法,例如Gauss-Seidel迭代法、SOR迭代法或共轭梯度法,求解该方程组,得到每个控制体积的物理量值。

FVM的优点在于:

  • 守恒性: 能够保证物理量的局部和全局守恒,这对于流体流动和传热问题的求解至关重要。

  • 灵活性: 适用于复杂几何形状和不规则网格,能够更好地适应实际工程问题。

  • 鲁棒性: 具有良好的数值稳定性和收敛性,能够处理各种复杂的流动情况。

2. 层流加热通道的物理模型和数学模型

我们考虑一个二维的层流加热通道,通道长度为L,高度为H。流体以均匀速度U进入通道,入口温度为T_in。通道上下壁面保持恒定高温T_w,模拟稳定流动和传热情况。

该问题的物理模型可以简化为以下几个假设:

  • 流体为牛顿流体,具有恒定的物理性质(密度ρ,粘度μ,比热容c_p,导热系数k)。

  • 流动为二维层流,忽略通道宽度方向的变化。

  • 忽略重力影响。

  • 忽略粘性耗散项和体积力。

基于上述假设,控制方程可以简化为:

  • 连续性方程:
    ∂u/∂x + ∂v/∂y = 0

  • 动量方程:
    ρ(u ∂u/∂x + v ∂u/∂y) = -∂p/∂x + μ(∂²u/∂x² + ∂²u/∂y²)
    ρ(u ∂v/∂x + v ∂v/∂y) = -∂p/∂y + μ(∂²v/∂x² + ∂²v/∂y²)

  • 能量方程:
    ρc_p(u ∂T/∂x + v ∂T/∂y) = k(∂²T/∂x² + ∂²T/∂y²)

其中,u和v分别为x和y方向的速度分量,p为压力,T为温度。

边界条件为:

  • 入口: u = U, v = 0, T = T_in

  • 出口: ∂u/∂x = 0, ∂v/∂x = 0, ∂T/∂x = 0 (充分发展流动)

  • 上下壁面: u = 0, v = 0, T = T_w

3. FVM离散和数值模拟

为了利用FVM求解上述控制方程,我们需要将其离散化。首先,将通道划分为若干个控制体积。可以选择结构化的矩形网格,也可以选择非结构化的网格。对于本问题,结构化网格通常足够满足精度要求。

然后,对控制方程在每个控制体积上进行积分。例如,对于能量方程,对控制体积Ω进行积分:

∫Ω ρc_p(u ∂T/∂x + v ∂T/∂y) dΩ = ∫Ω k(∂²T/∂x² + ∂²T/∂y²) dΩ

利用高斯散度定理,将体积积分转化为面积分:

∫∂Ω ρc_p T (u n_x + v n_y) dS = ∫∂Ω k (∂T/∂x n_x + ∂T/∂y n_y) dS

其中,∂Ω为控制体积Ω的边界,n_x和n_y分别为边界外法向量在x和y方向的分量,dS为边界上的微元面积。

接下来,需要选择合适的离散格式。对于对流项,可以选择迎风格式或混合格式,以保证数值稳定性。对于扩散项,可以选择中心差分格式。例如,对于迎风格式,可以将对流项离散为:

∫∂Ω ρc_p T (u n_x + v n_y) dS ≈ Σ_f ρc_p T_f (u_f n_x,f + v_f n_y,f) ΔS_f

其中,下标f表示控制体积边界,T_f表示边界处的温度,u_f和v_f分别为边界处的速度分量,ΔS_f为边界微元面积。如果 (u_f n_x,f + v_f n_y,f) > 0,则T_f = T_P (上游节点温度),否则 T_f = T_N (下游节点温度)。

将所有控制方程离散后,可以得到一个大型的代数方程组。可以采用迭代法,例如SIMPLE算法或PISO算法,求解该方程组。

4. 数值模拟结果分析

通过数值模拟,可以得到通道内的速度场、压力场和温度场。分析这些结果,可以深入了解层流加热通道的热力学行为。

  • 温度分布: 可以观察到温度随着流动方向逐渐升高,壁面附近的温度梯度较大。通过分析温度分布,可以评估通道的传热效率。

  • 努塞尔数 (Nusselt number): 努塞尔数是一个无量纲参数,用于衡量对流传热的强度。可以计算通道内的局部努塞尔数和平均努塞尔数,以评估通道的传热性能。Nu = hL/k,其中h是对流换热系数,L是特征长度,k是流体的导热系数。

  • 流动发展: 可以观察到入口处存在一个流动发展区,在该区域内,速度分布逐渐达到完全发展状态。

通过改变入口速度、壁面温度和通道几何尺寸等参数,可以研究这些参数对通道内热力学行为的影响。例如,增加入口速度可以提高传热效率,但也会增加压力降。增加壁面温度可以提高流体温度,但也会增加能耗。

5. 总结与展望

本文探讨了如何利用有限体积法模拟简单的层流加热通道中的热力学行为。通过对控制方程进行离散和求解,可以得到通道内的速度场、压力场和温度场,并分析这些结果,深入了解通道的传热性能和流动特性。

然而,本文的重点在于对基本原理的阐述。实际工程应用中,可能需要考虑更复杂的物理模型,例如:

  • 湍流模型: 如果流动速度较高,流动可能转变为湍流,需要采用湍流模型进行模拟,例如k-ε模型或k-ω模型。

  • 自然对流: 如果温度梯度较大,可能会产生自然对流,需要考虑浮升力效应。

  • 多相流: 如果通道内存在多种流体或相变现象,需要采用多相流模型进行模拟。

此外,为了提高计算精度和效率,可以采用更高级的网格划分技术和求解算法。例如,可以使用自适应网格细化技术,在温度梯度较大的区域加密网格,以提高计算精度。

总之,有限体积法是一种强大的数值模拟工具,可以用于研究各种复杂的热力学问题。通过不断发展和完善FVM技术,可以更好地理解和优化工程设备,提高能源效率和保障安全运行。 未来可以结合人工智能,例如机器学习算法,来优化网格生成和模型参数选择,进一步提高模拟精度和效率。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值