【SLAM】扩展卡尔曼滤波器实现超宽带传感器UWB和惯性测量单元IMU数据融合定位matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无人机技术在近年来得到了飞速发展,其应用领域涵盖了农业、物流、监控等多个方面。然而,要实现无人机在复杂环境下的自主导航和作业,一个核心挑战在于如何实现精准的同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)。本文将围绕基于扩展卡尔曼滤波(Extended Kalman Filter, EKF)、超宽带(Ultra-Wide Band, UWB)传感器和惯性测量单元(Inertial Measurement Unit, IMU)的无人机SLAM展开讨论,重点介绍利用最小二乘法(Least Squares, LS)估计系统初始状态的创新方法,并通过仿真和实测结果验证EKF算法及其LS初始化的有效性。

传统的SLAM算法依赖于视觉或激光雷达传感器来获取环境信息。然而,在光线不足、遮挡严重或缺乏纹理特征的环境中,这些传感器的性能会受到显著影响。UWB和IMU的组合为无人机SLAM提供了一种鲁棒且经济高效的替代方案。UWB传感器通过测量无线电信号的飞行时间来确定无人机与已知锚节点之间的距离,提供全局定位信息。IMU则通过测量无人机的角速度和加速度来估计其运动状态,提供局部运动信息。将两者结合可以有效克服单一传感器的局限性,实现更精确的定位和地图构建。

在本报告所研究的系统中,EKF算法被用于融合UWB和IMU的测量数据。EKF是一种常用的非线性系统状态估计方法,它通过对非线性模型进行线性化来近似求解卡尔曼滤波方程。具体而言,EKF首先利用状态方程预测无人机的下一时刻状态,然后利用测量方程将预测状态与UWB和IMU的测量数据进行比较,并根据测量残差修正状态估计值。状态方程描述了无人机的运动模型,通常基于牛顿运动定律构建;测量方程则描述了UWB和IMU测量值与无人机状态之间的关系。

值得注意的是,EKF算法的性能高度依赖于系统初始状态的准确性。如果初始状态估计不准确,EKF算法可能会收敛到错误的状态,导致定位和地图构建失败。为了解决这一问题,本文采用了一种基于最小二乘法的初始状态估计方法。该方法利用UWB传感器的距离测量数据,建立一个非线性方程组,该方程组描述了无人机初始位置与各锚节点位置之间的几何关系。通过求解该方程组,可以获得无人机初始位置的最小二乘估计。此外,利用IMU的初始姿态测量数据,可以进一步估计无人机的初始姿态。

与传统的初始状态估计方法相比,最小二乘法具有以下优点:

  • 易于实现:

     最小二乘法是一种经典的优化算法,具有成熟的理论基础和广泛的应用。

  • 鲁棒性强:

     最小二乘法对测量噪声具有一定的鲁棒性,能够有效抑制噪声对初始状态估计的影响。

  • 无需额外硬件:

     最小二乘法仅依赖于UWB和IMU的测量数据,无需额外的传感器或设备。

为了验证EKF算法及其LS初始化的有效性,本文进行了仿真和实测实验。仿真实验在一个虚拟的三维环境中进行,该环境模拟了典型的室内环境,并包含多个UWB锚节点。实验结果表明,EKF算法能够有效地融合UWB和IMU的测量数据,实现无人机的精准定位和地图构建。同时,LS初始化方法能够提供准确的初始状态估计,显著提高了EKF算法的收敛速度和定位精度。

实测实验在一个真实的室内环境中进行,该环境同样包含多个UWB锚节点。实验结果进一步验证了EKF算法及其LS初始化的有效性。与仿真实验结果相比,实测实验结果略有误差,这主要是由于环境中的噪声和干扰所导致的。然而,EKF算法仍然能够实现较为精确的定位和地图构建,表明该系统具有较强的实际应用价值。

具体而言,实测数据采集过程涵盖了以下步骤:

  1. 系统标定:

     对UWB传感器和IMU进行标定,以消除系统误差。

  2. 数据采集:

     使用UWB传感器和IMU同步采集数据,记录无人机的运动轨迹。

  3. 数据预处理:

     对采集到的数据进行滤波和校正,去除异常值。

  4. EKF算法执行:

     使用EKF算法融合UWB和IMU的数据,估计无人机的状态。

  5. 结果评估:

     将估计结果与地面真值进行比较,评估算法的性能。

实验结果表明,即使在存在噪声和干扰的情况下,EKF算法仍然能够提供较为准确的定位结果。基于最小二乘法的初始状态估计方法有效地提高了算法的收敛速度,并降低了对初始状态误差的敏感性。

综上所述,本文介绍了一种基于扩展卡尔曼滤波、超宽带和惯性测量单元的无人机同步定位与地图构建系统。该系统采用了一种基于最小二乘法的初始状态估计方法,并进行了仿真和实测验证。实验结果表明,EKF算法能够有效地融合UWB和IMU的测量数据,实现无人机的精准定位和地图构建。LS初始化方法能够提供准确的初始状态估计,显著提高了EKF算法的收敛速度和定位精度。该系统具有鲁棒性强、成本低廉、易于实现等优点,有望在无人机自主导航和作业领域得到广泛应用。未来的研究可以集中在以下几个方面:

  • 提高算法的鲁棒性:

     针对复杂的环境,进一步提高算法对噪声和干扰的鲁棒性。

  • 优化算法的计算效率:

     减少算法的计算量,提高实时性。

  • 融合更多传感器:

     将视觉传感器、激光雷达等其他传感器融合到系统中,进一步提高定位和地图构建的精度。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% get the distance to the landmarks

DeltaObs = xFeature-xVehicle(1:2);

z = [norm(DeltaObs)];

end

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值