✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着机器人技术的日益成熟,其应用场景也愈发广泛,从工业制造到医疗服务,再到日常生活,机器人都在发挥着越来越重要的作用。路径规划作为机器人自主导航的核心环节,直接影响着机器人的工作效率和安全性。在复杂的环境下,如何规划出一条高效且安全的路径,成为了机器人研究领域的热点问题。栅格地图作为一种常用的环境表示方法,以其简单直观、易于处理的特点被广泛应用于机器人路径规划中。本文将探讨基于梦境算法(Sine Cosine Algorithm, SCA)和蜣螂算法(Dung Beetle Optimizer, DBO)实现机器人栅格地图路径规划,并以最短距离作为目标函数,旨在探索一种更加高效、稳定的路径规划方法。
一、栅格地图与路径规划
栅格地图是一种将环境离散化为二维网格的表示方法,每个网格单元代表环境中的一个区域,并赋予相应的属性,如障碍物、自由空间等。这种离散化的表示方法将复杂的连续环境转化为离散的结构,方便计算机进行处理和分析。路径规划就是在栅格地图中寻找一条从起始点到目标点的可行路径,该路径需要满足一定的约束条件,如避开障碍物、尽可能短等。
传统的路径规划算法,如A*算法、Dijkstra算法等,虽然理论上能够找到最优解,但当地图规模较大时,其计算复杂度会急剧增加,导致效率低下。此外,这些算法容易陷入局部最优解,难以应对复杂环境中的挑战。近年来,基于群智能优化算法的路径规划方法受到了广泛关注,这类算法通过模拟自然界中生物群体的行为,能够在全局范围内搜索最优解,具有较强的鲁棒性和适应性。
二、梦境算法SCA
梦境算法(SCA)是一种基于正弦和余弦函数的全局优化算法,由Mirjalili于2016年提出。该算法模拟了人类在梦境中探索新方向的行为,通过随机生成的正弦和余弦函数值来调整搜索个体的运动轨迹。SCA算法具有结构简单、参数少、易于实现等优点,并且在解决优化问题时表现出了较强的搜索能力和收敛速度。
SCA算法的核心思想在于利用正弦和余弦函数来控制搜索个体的运动方向和步长。算法的更新公式如下:
X<sub>i</sub><sup>t+1</sup> = X<sub>i</sub><sup>t</sup> + r<sub>1</sub> * sin(r<sub>2</sub>) * |r<sub>3</sub> * X<sup>best</sup> - X<sub>i</sub><sup>t</sup>| , if r<sub>4</sub> < 0.5
X<sub>i</sub><sup>t+1</sup> = X<sub>i</sub><sup>t</sup> + r<sub>1</sub> * cos(r<sub>2</sub>) * |r<sub>3</sub> * X<sup>best</sup> - X<sub>i</sub><sup>t</sup>| , if r<sub>4</sub> ≥ 0.5
其中,X<sub>i</sub><sup>t</sup>表示第i个个体在第t次迭代时的位置,X<sup>best</sup>表示当前找到的最优个体位置,r<sub>1</sub>, r<sub>2</sub>, r<sub>3</sub>, r<sub>4</sub>是随机数,r<sub>1</sub>用于控制搜索范围,r<sub>2</sub>决定搜索方向,r<sub>3</sub>影响个体与最优个体之间的距离,r<sub>4</sub>控制个体使用正弦或余弦函数进行更新。
三、蜣螂算法DBO
蜣螂算法(DBO)是一种由Jiankai Xue等于2022年提出的新型元启发式优化算法。该算法模拟了蜣螂在自然界中滚动粪球、避开障碍物以及寻找食物的行为。DBO算法具有较强的全局搜索能力和收敛速度,并且能够有效地避免陷入局部最优解。
DBO算法主要包含以下几种行为模式:
-
滚动蜣螂: 滚动蜣螂是整个群体中的领导者,负责探索新的区域。其更新公式如下:
X<sub>i</sub><sup>t+1</sup> = X<sub>i</sub><sup>t</sup> + α * sin(θ) * exp(-X<sub>i</sub><sup>t</sup>/θ)
其中,α是一个随机数,θ是滚动角度。
-
繁殖蜣螂: 繁殖蜣螂负责在滚动蜣螂周围搜索更加精细的区域。其更新公式如下:
X<sub>i</sub><sup>t+1</sup> = X<sup>best</sup> + β * exp(-X<sub>i</sub><sup>t</sup>/X<sup>best</sup>)
其中,β是一个随机数,X<sup>best</sup>是当前最优位置。
-
觅食蜣螂: 觅食蜣螂负责寻找食物,并在找到食物后将其带回巢穴。其更新公式如下:
X<sub>i</sub><sup>t+1</sup> = X<sub>i</sub><sup>t</sup> + γ * (X<sup>worst</sup> - X<sub>i</sub><sup>t</sup>)
其中,γ是一个随机数,X<sup>worst</sup>是当前最差位置。
-
强盗蜣螂: 强盗蜣螂负责抢夺其他蜣螂的食物。其更新公式如下:
X<sub>i</sub><sup>t+1</sup> = X<sub>i</sub><sup>t</sup> + rand() * (X<sup>best</sup> - X<sub>i</sub><sup>t</sup>)
其中,rand()是一个随机数。
四、基于SCA和DBO的路径规划方法
本文将SCA和DBO算法相结合,提出一种新的机器人栅格地图路径规划方法,以最短距离作为目标函数。该方法的主要步骤如下:
- 初始化种群:
在栅格地图中随机生成一组个体,每个个体代表一条可能的路径。路径可以用一系列栅格单元的坐标表示。
- 目标函数评估:
计算每个个体的目标函数值,即路径的长度。路径长度可以通过计算相邻栅格单元之间的距离之和来得到。同时,需要对路径进行有效性判断,即判断路径是否经过障碍物。如果路径经过障碍物,则赋予其一个较大的目标函数值,以 penalize 该路径。
- SCA算法搜索:
使用SCA算法对种群进行更新,通过正弦和余弦函数控制个体的运动方向和步长,探索新的区域。
- DBO算法搜索:
使用DBO算法对种群进行更新,通过模拟蜣螂的滚动、繁殖、觅食和强盗行为,进一步优化路径。
- 选择:
选择目标函数值最小的个体作为当前最优解。
- 判断终止条件:
判断是否满足终止条件,如达到最大迭代次数或找到满足要求的路径。如果满足终止条件,则输出最优路径;否则,返回步骤3,继续迭代。
⛳️ 运行结果
🔗 参考文献
[1] 林连秀,叶芸,姚剑敏,et al.基于ORB-SLAM的移动机器人嵌入式实现与优化[J].微型机与应用, 2017, 36(5):4.DOI:10.19358/j.issn.1674-7720.2017.05.016.
[2] 秦雨露,李宏伟,杨小月,等.基于因子图的多机器人协同算法改进[J].计算机工程与设计, 2024, 45(7):1981-1988.DOI:10.16208/j.issn1000-7024.2024.07.009.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇