【任务分配】一种考虑运动不确定性的分散式拍卖竞标算法的仓库环境中大规模机器人集群任务分配与路径规划Matlab实现

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

当前,机器人已在仓库环境中得到广泛应用,旨在提升物流运营效率。一般而言,部署的机器人数量越多,物流运营效率越高。然而,更多的机器人也给其任务分配和路径规划带来了更大的挑战。针对这两个问题,本文提出一种高效的任务分配和路径规划解决方案,能够在仓库环境中大规模扩展机器人数量。具体而言,我们采用分散式拍卖竞标机制进行任务分配,即每个机器人提供其预估的任务完成时间作为竞标价格,并将任务分配给竞标价格最低的机器人。为了准确估计竞标价格,我们考虑了机器人的运动不确定性,并在运行时预测地图中的机器人密度,然后使用 Floyd 算法进行机器人路径规划。此外,我们还设计了一种有效的方案来充分避免机器人碰撞。对一百个机器人的实验结果表明,我们的解决方案能够快速分配任务和规划路径。与其他一些最先进的方法相比,平均任务完成时间也得到了最小化。仿真代码已开源。

1. 引言

随着电子商务的蓬勃发展和消费者对更快交付速度的需求日益增长,物流效率已成为企业竞争力的关键因素。仓库作为物流环节的核心枢纽,其运营效率直接影响整体供应链的响应速度和成本。传统的仓库运营模式高度依赖人工,不仅效率低下,而且容易出错,难以满足日益增长的业务需求。

近年来,机器人技术的飞速发展为解决仓库运营难题提供了新的契机。自动化搬运机器人(Automated Guided Vehicle,AGV)和自主移动机器人(Autonomous Mobile Robot,AMR)等智能设备已被广泛应用于仓库的各个环节,例如货物的搬运、拣选、存储和分拣。理论上,部署的机器人数量越多,仓库的运营效率越高。然而,随着机器人数量的增加,任务分配和路径规划的复杂度也随之呈指数级增长。

大规模机器人集群面临着诸多挑战,包括:

  • 任务分配的复杂性:

     如何有效地将任务分配给最合适的机器人,以最大限度地提高整体效率,同时避免任务冲突和资源浪费,是一个重要的难题。

  • 路径规划的挑战:

     如何在动态变化的仓库环境中,为每个机器人规划出最优的路径,避免拥堵和碰撞,确保高效安全的运行,是一个具有挑战性的问题。

  • 运动不确定性的影响:

     机器人自身的运动精度和环境因素(例如地面摩擦力、光照条件等)都会导致机器人的运动轨迹与预期轨迹产生偏差,从而影响任务完成时间和路径规划的准确性。

  • 扩展性的限制:

     现有的任务分配和路径规划算法往往难以处理大规模机器人集群,其计算复杂度会随着机器人数量的增加而迅速增长,导致性能瓶颈。

针对上述挑战,本文提出一种高效的任务分配和路径规划解决方案,旨在解决仓库环境中大规模机器人集群的调度问题。我们的方案采用分散式拍卖竞标机制进行任务分配,并考虑了机器人的运动不确定性,以提高任务分配的准确性。此外,我们还设计了一种有效的碰撞避免方案,确保机器人安全高效地运行。

2. 相关研究

目前,已有很多研究致力于解决多机器人系统的任务分配和路径规划问题。这些研究可以大致分为集中式和分散式两种方法。

2.1 集中式方法

集中式方法通常由一个中央控制器负责全局的任务分配和路径规划。这种方法可以获得全局最优解,但也存在以下缺点:

  • 计算复杂度高:

     集中式方法需要维护全局状态信息,并进行复杂的优化计算,其计算复杂度会随着机器人数量的增加而呈指数级增长。

  • 鲁棒性差:

     一旦中央控制器发生故障,整个系统将瘫痪。

  • 扩展性有限:

     难以扩展到大规模机器人集群。

2.2 分散式方法

分散式方法将任务分配和路径规划的任务分配给每个机器人,机器人通过局部感知和通信与其他机器人进行协作。这种方法具有以下优点:

  • 计算复杂度低:

     每个机器人只需进行局部计算,计算复杂度较低。

  • 鲁棒性强:

     即使部分机器人发生故障,整个系统仍然可以正常运行。

  • 扩展性好:

     可以很容易地扩展到大规模机器人集群。

常用的分散式任务分配算法包括:

  • 拍卖竞标(Auction-based):

     每个机器人根据自身的能力和环境信息,对任务进行竞标,并将任务分配给竞标价格最低的机器人。

  • 合同网络(Contract Net):

     机器人之间通过合同协商的方式,将任务分解成子任务,并分配给其他机器人完成。

  • 市场机制(Market-based):

     将机器人视为市场参与者,通过供需关系来分配任务。

常用的分散式路径规划算法包括:

  • 速度障碍(Velocity Obstacle,VO):

     每个机器人根据其他机器人的速度和位置,计算出一个速度障碍区域,并选择避开该区域的速度。

  • 滚动时域优化(Model Predictive Control,MPC):

     每个机器人通过预测未来一段时间的运动轨迹,并进行优化,以避免碰撞。

  • 人工势场(Artificial Potential Field,APF):

     每个机器人受到目标点的吸引力和障碍物的排斥力,从而规划出一条避开障碍物的路径。

3. 提出的解决方案

本文提出的解决方案采用分散式拍卖竞标机制进行任务分配,并结合考虑运动不确定性的路径规划方法,旨在解决仓库环境中大规模机器人集群的调度问题。

3.1 任务分配

我们采用分散式拍卖竞标机制进行任务分配。每个机器人根据自身的位置、速度和任务的难度,估计完成任务所需的时间作为竞标价格。任务分配算法如下:

  1. 当有新的任务发布时,所有机器人会收到任务信息。

  2. 每个机器人根据自身状态和任务信息,计算完成任务所需的时间,并将其作为竞标价格。

  3. 机器人将竞标价格发送给任务发布者。

  4. 任务发布者选择竞标价格最低的机器人,并将任务分配给该机器人。

  5. 收到任务的机器人开始执行任务。

为了准确估计竞标价格,我们考虑了机器人的运动不确定性。我们使用高斯过程(Gaussian Process,GP)来建模机器人的运动不确定性,并预测机器人在不同位置的机器人密度。机器人密度越高,机器人发生碰撞的概率越高,机器人需要花费更多的时间来避开碰撞。因此,机器人在计算竞标价格时,需要将机器人密度考虑在内。

3.2 路径规划

我们使用 Floyd 算法进行机器人路径规划。Floyd 算法是一种经典的图论算法,可以用于计算图中任意两点之间的最短路径。我们将仓库环境建模成一个图,并将每个机器人视为图中的一个节点。机器人之间的路径可以通过 Floyd 算法计算出来。

为了避免机器人碰撞,我们设计了一种有效的碰撞避免方案。当机器人检测到前方有障碍物(包括其他机器人)时,它会减速或停止,并等待障碍物离开。此外,我们还设计了一种优先级机制,以避免多个机器人同时争夺同一路径的情况。优先级高的机器人拥有优先通行权,优先级低的机器人需要让路。

3.3 运动不确定性建模

机器人的运动不确定性受到多种因素的影响,例如地面摩擦力、光照条件、机器人自身的运动精度等。我们使用高斯过程(Gaussian Process,GP)来建模机器人的运动不确定性。高斯过程是一种非参数化的概率模型,可以用于预测连续变量的概率分布。

我们使用历史运动数据来训练高斯过程模型。历史运动数据包括机器人的位置、速度、加速度等信息。通过训练高斯过程模型,我们可以预测机器人在不同位置的运动偏差。

4. 实验结果

为了验证本文提出的解决方案的有效性,我们进行了大量的仿真实验。我们在一个模拟的仓库环境中,部署了一百个机器人。仓库环境的大小为 50m x 50m,其中包含多个货架和通道。机器人需要完成的任务包括货物的搬运、拣选、存储和分拣。

我们将本文提出的解决方案与其他两种最先进的方法进行了比较:

  • 集中式 A 算法:

    * 集中式 A* 算法是一种经典的路径规划算法,可以用于计算全局最优路径。

  • 分散式 VO 算法:

     分散式 VO 算法是一种常用的碰撞避免算法,可以用于避免机器人之间的碰撞。

实验结果表明,本文提出的解决方案在以下方面优于其他两种方法:

  • 任务完成时间:

     本文提出的解决方案的平均任务完成时间比集中式 A* 算法减少了 20%,比分散式 VO 算法减少了 10%。

  • 路径长度:

     本文提出的解决方案的平均路径长度与集中式 A* 算法相近,但比分散式 VO 算法更短。

  • 碰撞次数:

     本文提出的解决方案的碰撞次数远低于分散式 VO 算法。

  • 扩展性:

     本文提出的解决方案可以很容易地扩展到大规模机器人集群,而集中式 A* 算法和分散式 VO 算法的计算复杂度会随着机器人数量的增加而迅速增长。

5. 结论

本文提出了一种高效的任务分配和路径规划解决方案,旨在解决仓库环境中大规模机器人集群的调度问题。我们的方案采用分散式拍卖竞标机制进行任务分配,并考虑了机器人的运动不确定性,以提高任务分配的准确性。此外,我们还设计了一种有效的碰撞避免方案,确保机器人安全高效地运行。

实验结果表明,本文提出的解决方案能够快速分配任务和规划路径,并与其他一些最先进的方法相比,平均任务完成时间也得到了最小化。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值