工艺参数优化、工程设计优化!GRNN神经网络+NSGAII多目标优化算法(Matlab)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着科学技术的飞速发展,现代工程设计与工艺参数优化面临着越来越复杂的挑战。传统的实验方法和经验公式往往耗时耗力,难以找到全局最优解。因此,利用先进的优化算法和机器学习方法进行高效、精准的优化成为一种必然趋势。本文将重点探讨基于广义回归神经网络(Generalized Regression Neural Network, GRNN)和非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm II, NSGA-II)的多目标优化方法,并阐述其在工艺参数优化和工程设计优化中的应用。

一、多目标优化的重要性与挑战

在实际工程应用中,优化目标往往不止一个,而是多个相互冲突的目标同时存在。例如,在机械设计中,既要追求轻量化,又要保证强度和刚度;在化工生产中,既要提高产量,又要降低成本和能耗。这种多个目标相互制约的情况就构成了多目标优化问题。

与单目标优化相比,多目标优化的难度显著增加。由于目标之间存在冲突,通常不存在单一的全局最优解,而是存在一个Pareto最优解集,也称为Pareto前沿。Pareto最优解的特点是:无法在改善某个目标的同时不损害其他目标。因此,多目标优化的目标不是找到唯一的最佳解,而是找到尽可能多、尽可能分布均匀的Pareto最优解,并提供给决策者根据实际需求进行权衡和选择。

二、GRNN神经网络的模型与优势

广义回归神经网络(GRNN)是一种径向基神经网络(RBF Neural Network)的变体,属于统计学习方法。与传统的BP神经网络相比,GRNN具有以下显著优势:

  • 快速学习能力:

     GRNN采用非迭代的学习方式,无需复杂的反向传播训练过程,因此训练速度极快,能够适应实时性要求较高的优化问题。

  • 强大的非线性拟合能力:

     GRNN能够逼近任意非线性函数,对于复杂的工艺参数与工程设计关系具有良好的建模能力。

  • 良好的鲁棒性:

     GRNN对输入数据的噪声具有较强的鲁棒性,能够在一定程度上克服实验误差带来的影响。

  • 参数少,易于实现:

     GRNN的参数较少,主要参数是平滑因子,易于调整和控制。

GRNN的基本结构包括输入层、模式层、求和层和输出层。其基本原理是:基于输入数据,通过高斯核函数计算输入向量与训练样本之间的距离,并将距离加权求和,最终得到预测结果。GRNN的预测过程可以理解为一种非参数的回归分析,它利用训练样本的信息来估计目标变量的条件均值。

在多目标优化中,GRNN可以作为目标函数的代理模型(Surrogate Model)。通过GRNN,我们可以建立输入参数(例如,工艺参数、设计变量)与输出目标(例如,产量、强度、成本)之间的非线性映射关系。这样,我们就可以利用GRNN来快速评估不同设计方案的目标函数值,从而加速优化过程。

三、NSGA-II算法的原理与特性

非支配排序遗传算法(NSGA-II)是一种经典的进化算法,专门用于解决多目标优化问题。它在传统遗传算法的基础上进行了改进,具有以下关键特性:

  • 非支配排序:

     NSGA-II首先对种群中的个体进行非支配排序,将个体划分为不同的等级。第一等级的个体为Pareto最优解,第二等级的个体优于第一等级之外的所有个体,以此类推。通过非支配排序,NSGA-II能够有效地引导种群朝着Pareto前沿方向进化。

  • 拥挤度距离:

     为了保持种群的多样性,NSGA-II引入了拥挤度距离的概念。拥挤度距离表示个体周围解的密度,拥挤度距离越大,表示该个体周围的解越稀疏,个体越有保留价值。

  • 精英保留策略:

     NSGA-II采用精英保留策略,将每一代的最优个体直接保留到下一代,避免了最优解的丢失,提高了算法的收敛速度和稳定性。

NSGA-II的算法流程通常包括以下步骤:

  1. 初始化种群:

     随机生成初始种群,种群中的每个个体代表一个候选解。

  2. 非支配排序:

     对种群中的个体进行非支配排序,确定个体的等级。

  3. 拥挤度距离计算:

     计算个体的拥挤度距离,评估个体周围解的密度。

  4. 选择操作:

     基于非支配排序和拥挤度距离,采用锦标赛选择等方法选择优秀个体。

  5. 交叉操作:

     对选择出的个体进行交叉操作,生成新的个体。

  6. 变异操作:

     对交叉产生的个体进行变异操作,增加种群的多样性。

  7. 合并种群:

     将父代种群和子代种群合并。

  8. 更新种群:

     对合并后的种群进行非支配排序和拥挤度距离计算,选择出新的种群。

  9. 判断是否满足终止条件:

     如果满足终止条件(例如,达到最大迭代次数),则算法结束,否则返回步骤2。

四、GRNN+NSGA-II的多目标优化框架

将GRNN神经网络和NSGA-II算法相结合,可以构建一种高效的多目标优化框架。该框架的基本流程如下:

  1. 数据采集与预处理:

     通过实验或仿真,收集输入参数和输出目标的数据。对数据进行归一化处理,消除不同量纲的影响。

  2. GRNN模型训练:

     利用收集到的数据训练GRNN神经网络,建立输入参数与输出目标之间的代理模型。

  3. NSGA-II算法初始化:

     初始化NSGA-II算法的参数,包括种群规模、交叉概率、变异概率等。

  4. 个体适应度评估:

     利用训练好的GRNN模型评估种群中每个个体的适应度值,即每个个体的多个目标函数值。

  5. NSGA-II算法迭代:

     运行NSGA-II算法,进行非支配排序、拥挤度距离计算、选择、交叉、变异等操作,不断更新种群,逼近Pareto前沿。

  6. 结果分析与决策:

     算法结束后,得到Pareto最优解集。决策者可以根据实际需求,对Pareto最优解进行权衡和选择,确定最终的设计方案。

五、应用实例:工艺参数优化与工程设计优化

GRNN+NSGA-II的多目标优化框架可以应用于多个领域,下面列举几个应用实例:

  • 工艺参数优化:

     在化工生产过程中,可以通过优化反应温度、反应时间、催化剂用量等工艺参数,同时提高产品产量和降低生产成本。

  • 机械结构优化:

     在机械设计中,可以通过优化结构尺寸、材料选择等设计变量,同时实现轻量化、高强度和高刚度。

  • 控制系统优化:

     在控制系统设计中,可以通过优化控制器参数,同时提高系统的响应速度和稳定性。

  • 能源系统优化:

     在能源系统设计中,可以通过优化系统结构和运行参数,同时降低能耗和提高能源利用率。

六、Matlab实现要点

使用Matlab实现基于GRNN和NSGA-II的多目标优化,需要注意以下几个要点:

  • GRNN神经网络的Matlab实现:

     可以使用Matlab自带的newrb函数创建GRNN神经网络,并使用训练数据对其进行训练。也可以自行编写GRNN神经网络的训练和预测函数。

  • NSGA-II算法的Matlab实现:

     可以参考Matlab中的遗传算法工具箱,或者自行编写NSGA-II算法的函数。需要注意实现非支配排序、拥挤度距离计算、选择、交叉、变异等操作。

  • GRNN与NSGA-II的集成:

     将GRNN神经网络作为NSGA-II算法的适应度函数,利用GRNN模型快速评估个体的适应度值。

  • 结果可视化:

     利用Matlab的绘图功能,将Pareto前沿可视化,方便决策者进行分析和选择。

七、总结与展望

基于GRNN神经网络和NSGA-II算法的多目标优化方法,能够有效地解决工程设计和工艺参数优化中存在的多个目标相互冲突的问题。GRNN神经网络具有快速学习和非线性拟合能力,可以作为目标函数的代理模型,加速优化过程。NSGA-II算法是一种经典的进化算法,能够有效地搜索Pareto最优解集。将两者相结合,可以构建一种高效的多目标优化框架,为工程实践提供有力的支持。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值