【图像处理】双边滤波器论文代码复现及其改进附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

双边滤波器作为图像处理领域中一种经典的非线性滤波器,以其在平滑图像噪声的同时有效保持边缘细节的能力而广受关注。它巧妙地结合了空间邻近度和像素值相似度,在去噪和边缘保持之间取得了良好的平衡。本文旨在深入探讨双边滤波器的理论基础,详细复现其经典论文中的算法,并在此基础上探讨可能的改进方向,最终提供相应的Matlab实现代码。

一、双边滤波器的理论基础

传统的线性滤波器,例如高斯滤波器,通过对图像像素邻域进行加权平均来实现平滑,其权重仅与像素的空间距离有关。然而,这种方法在平滑噪声的同时往往会模糊图像的边缘细节,造成视觉上的损失。双边滤波器则引入了像素值相似度的概念,在计算加权平均时,不仅考虑像素间的空间距离,还考虑像素值之间的差异。

具体而言,双边滤波器的输出像素值定义如下:

J(p) = (1/Wp) * Σq∈Sp Gσs(||p-q||) * Gσr(|I(p)-I(q)|) * I(q)

其中:

  • J(p)

     表示滤波后像素点 p 的值。

  • I(p)

     表示原始图像像素点 p 的值。

  • Sp

     表示以像素点 p 为中心的邻域。

  • Gσs(||p-q||)

     表示空间距离权重,通常是一个高斯函数,σs 为空间标准差,||p-q|| 表示像素点 p 和 q 之间的欧氏距离。

  • Gσr(|I(p)-I(q)|)

     表示像素值相似度权重,同样是一个高斯函数,σr 为像素值标准差,|I(p)-I(q)| 表示像素点 p 和 q 之间像素值的绝对差。

  • Wp

     表示归一化因子,即所有权重的总和: Wp = Σq∈Sp Gσs(||p-q||) * Gσr(|I(p)-I(q)|)

从公式可以看出,双边滤波器的核心在于两个高斯核:空间高斯核 Gσs 和像素值高斯核 Gσr。空间高斯核负责对空间距离近的像素赋予更大的权重,保证邻域像素的平滑效果;像素值高斯核负责对像素值相近的像素赋予更大的权重,使得边缘附近的像素能够被更好地保留。

二、经典论文算法复现

本文选择Tomasi 和 Manduchi 在1998年发表的论文 "Bilateral Filtering for Gray and Color Images" 作为复现对象。 该论文首次提出了双边滤波器的概念,并给出了适用于灰度和彩色图像的算法。

复现该论文的核心在于理解并实现公式中的各个部分。具体步骤如下:

  1. 确定邻域大小:

     需要设定邻域半径 r,从而确定邻域的大小为 (2r+1) x (2r+1)。

  2. 计算空间高斯权重:

     对于邻域中的每个像素 q,计算其与中心像素 p 的欧氏距离,并代入空间高斯函数 Gσs(||p-q||) 中,计算其权重。

  3. 计算像素值高斯权重:

     对于邻域中的每个像素 q,计算其与中心像素 p 的像素值差的绝对值,并代入像素值高斯函数 Gσr(|I(p)-I(q)|) 中,计算其权重。对于彩色图像,需要对 R、G、B 三个通道分别计算像素值差,然后取平均或加权平均。

  4. 计算加权平均:

     将邻域中每个像素的像素值乘以其对应的空间权重和像素值权重,然后求和。

  5. 归一化:

     将加权平均的结果除以归一化因子 Wp,得到滤波后的像素值。

三、算法改进的探讨

尽管双边滤波器在去噪和边缘保持方面表现出色,但它也存在一些局限性,例如计算复杂度高、参数选择敏感等。因此,对其进行改进具有重要的实际意义。以下是一些可能的改进方向:

  1. 加速算法: 双边滤波器的计算复杂度较高,尤其是在大尺寸图像和较大邻域半径的情况下。可以采用以下方法加速算法:

    • 查表法:

       预先计算出高斯函数的取值,并存储在一个查找表中,从而避免重复计算。

    • 快速近似:

       使用其他函数近似高斯函数,例如使用矩形函数或者其他计算更快的函数。

    • 分层分解:

       将图像分解为多个层,在不同的层上使用不同的参数进行滤波,从而降低计算复杂度。

    • 硬件加速:

       利用GPU等硬件进行并行计算,提高滤波速度。

  2. 自适应参数选择: 双边滤波器的性能很大程度上依赖于参数 σs 和 σr 的选择。可以采用以下方法实现自适应参数选择:

    • 基于局部方差:

       根据图像的局部方差来动态调整 σs 和 σr 的大小,使得在平坦区域使用较大的 σs 和 σr,而在边缘区域使用较小的 σs 和 σr。

    • 基于梯度:

       根据图像的梯度来动态调整 σs 和 σr 的大小,在梯度大的地方使用较小的 σs 和 σr,以更好地保持边缘。

    • 机器学习:

       使用机器学习方法来学习最佳的参数组合,例如使用神经网络或者支持向量机。

  3. 改进权重计算: 可以尝试改进空间权重和像素值权重的计算方式,例如:

    • 使用非高斯函数:

       使用其他函数代替高斯函数,例如使用指数函数或者双曲函数。

    • 引入其他特征:

       除了像素值差异外,还可以考虑其他图像特征,例如梯度、纹理等,将其纳入权重计算中。

    • 方向自适应:

       针对边缘的方向性特征,设计方向自适应的空间权重,提升边缘保持能力。

  4. 与其他滤波器的结合: 可以将双边滤波器与其他滤波器结合使用,例如与小波变换、形态学滤波等结合,从而获得更好的滤波效果。例如,先使用双边滤波器进行初步的去噪和边缘保持,然后使用其他滤波器进一步去除剩余的噪声。

四、结论

双边滤波器作为一种经典的图像处理算法,在去噪和边缘保持方面具有独特的优势。本文深入探讨了其理论基础,详细复现了经典论文中的算法,并在此基础上探讨了可能的改进方向,并提供了相应的Matlab实现代码。 虽然以上代码只是一个基本的实现,但它为进一步的研究和应用奠定了基础。 未来可以继续探索更高效的实现方式,更智能的参数选择方法,以及更适合特定应用场景的改进策略,以充分发挥双边滤波器的潜力。 通过不断的研究和实践,双边滤波器将在图像处理领域发挥更大的作用。

⛳️ 运行结果

图片

图片

🔗 参考文献

[1] 任文龙.地面三维激光扫描数据滤波算法的研究[D].长安大学,2017.

[2] 朱萍,梅婕,朱晓勃,等.双边滤波和标记分水岭的CT心脏图像分割[J].计算机工程与应用唯一官方网站, 2015, 51(8):170-173.DOI:10.3778/j.issn.1002-8331.1305-0301.

[3] 赵春丽,董静薇.基于暗通道及多尺度Retinex的雾霾天气图像增强算法[J].激光杂志, 2018, 39(1):6.DOI:10.14016/j.cnki.jgzz.2018.01.104.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值