✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 微网作为一种新型的能源系统,能够有效地提高能源利用率、降低能源消耗,并促进可再生能源的接入。然而,单个微网的运行优化往往受到自身资源约束的限制。因此,多个微网之间的能源共享成为了提升系统整体性能的重要途径。本文旨在复现并深入研究一篇发表于SCI期刊的论文,该论文提出了一种基于纳什博弈的多微网主体电热双层共享策略。通过对该策略的理论推导、模型构建以及算例分析,本文将探讨该策略在提高能源利用率、降低运行成本和促进可再生能源消纳等方面的优势与挑战,并对其适用性进行评估,为未来微网集群的协调控制提供参考。
关键词: 微网,能源共享,纳什博弈,电热双层,优化调度
1. 引言
随着能源危机和环境污染问题的日益严重,构建清洁、高效、可持续的能源系统已成为全球共识。微网(Microgrid, MG)作为一种包含分布式电源、储能系统和负荷的小型电力系统,能够独立运行或并入大电网,有效地提高了能源利用效率、增强了供电可靠性,并促进了可再生能源的接入,在能源转型中扮演着重要的角色。然而,单个微网的运行优化往往受到自身资源约束的限制,例如可再生能源的波动性、储能系统的容量限制以及负荷需求的不确定性等。
为了克服单个微网的局限性,多个微网之间的能源共享成为了提升系统整体性能的重要途径。通过微网之间的能量交互,可以实现资源互补,平抑可再生能源的波动性,降低运行成本,提高供电可靠性,并最终实现整个能源系统的优化。因此,多微网协同优化调度成为了当前研究的热点。
在多微网协同优化调度的策略中,基于博弈论的方法受到了广泛的关注。博弈论能够有效地模拟多个自主主体之间的交互行为,并寻找最优的策略组合。纳什博弈作为博弈论中最基本的概念之一,适用于多个理性参与者相互竞争但又需要合作的场景。在多微网能源共享中,每个微网都可以被视为一个独立的理性参与者,它们希望通过能量交互来降低自身的运行成本,但同时也要考虑其他微网的需求和利益。
本文旨在复现并深入研究一篇发表于SCI期刊的论文,该论文提出了一种基于纳什博弈的多微网主体电热双层共享策略。该策略将电力和热力系统分别建模,构建了电热双层的优化调度模型,并通过纳什博弈来协调各个微网的运行策略,从而实现整个系统的优化。本文将详细介绍该策略的理论框架、模型构建方法以及求解算法,并通过算例分析来验证其有效性。同时,本文还将探讨该策略在实际应用中可能面临的挑战,并对其适用性进行评估。
2. 文献综述
近年来,多微网协同优化调度问题受到了国内外学者的广泛关注,涌现出大量的研究成果。根据不同的调度目标和策略,可以将这些研究成果分为以下几类:
- 集中式优化调度:
集中式优化调度方法将多个微网作为一个整体进行优化,由中央控制器统一协调各个微网的运行。这种方法能够实现全局最优,但是需要大量的计算资源和通信基础设施,并且对单个微网的自主性限制较大。
- 分布式优化调度:
分布式优化调度方法允许各个微网自主决策,并通过信息交互来协调彼此的运行。这种方法能够提高系统的灵活性和鲁棒性,但是需要设计合理的协调机制,以避免局部最优解。
- 基于博弈论的优化调度:
基于博弈论的优化调度方法将各个微网视为独立的理性参与者,通过博弈模型来模拟它们的交互行为,并寻找纳什均衡解。这种方法能够平衡各个微网的利益,并实现系统的整体优化。
在基于博弈论的多微网优化调度研究中,常见的博弈模型包括:
- 合作博弈:
合作博弈强调参与者之间的合作,通过形成联盟来提高整体收益。例如,可以研究多个微网组成一个能源共享联盟,共同参与能源市场。
- 非合作博弈:
非合作博弈强调参与者之间的竞争,每个参与者独立决策,以最大化自身的利益。纳什博弈是典型的非合作博弈,它寻找的是所有参与者的最佳策略组合,使得没有一个参与者可以通过单方面改变策略来获得更高的收益。
- Stackelberg博弈:
Stackelberg博弈是一种主从博弈,其中一个参与者作为领导者,首先制定策略,其他参与者作为跟随者,根据领导者的策略来制定自身的策略。在多微网能源共享中,可以将一个微网作为领导者,负责制定能源交易价格,其他微网作为跟随者,根据价格来调整自身的运行策略。
此外,随着综合能源系统的发展,越来越多的研究开始关注电热多能流的耦合优化调度。这些研究通常将电力和热力系统分别建模,构建电热双层的优化调度模型,并采用合适的优化算法来求解。
3. 基于纳什博弈的多微网主体电热双层共享策略
本节将详细介绍该论文提出的基于纳什博弈的多微网主体电热双层共享策略。该策略的核心思想是将多个微网视为独立的理性参与者,它们通过电热双层的优化调度模型来制定自身的运行策略,并通过纳什博弈来协调彼此的运行,最终实现整个系统的优化。
3.1 模型构建
该策略构建了电热双层的优化调度模型,其中电力系统模型主要包括:
- 分布式电源模型:
包括光伏发电、风力发电等可再生能源的发电机组模型,以及燃气轮机、柴油发电机等传统发电机组模型。
- 储能系统模型:
包括电池储能、抽水蓄能等储能设备模型。
- 负荷模型:
包括电力负荷、热力负荷等负荷模型。
- 电力网络模型:
包括输电线路、变压器等电力网络设备模型。
热力系统模型主要包括:
- 热源模型:
包括燃气锅炉、电锅炉等热源设备模型。
- 储热系统模型:
包括热水罐、蓄热电锅炉等储热设备模型。
- 热力负荷模型:
包括居民供暖、工业供热等热力负荷模型。
- 热力网络模型:
包括热力管道、换热站等热力网络设备模型。
该模型的目标函数通常是最小化运行成本,包括燃料成本、维护成本、环境成本等。约束条件包括:
- 功率平衡约束:
电力系统的发电机组出力与负荷需求之和必须平衡。
- 热平衡约束:
热力系统的热源出力与热力负荷需求之和必须平衡。
- 设备容量约束:
各个设备的出力不能超过其容量限制。
- 储能系统约束:
储能系统的充放电功率和储能容量必须满足其约束条件。
- 网络约束:
电力网络和热力网络的运行必须满足其安全约束。
3.2 纳什博弈建模
将每个微网视为一个独立的理性参与者,每个参与者的策略是其自身的运行策略,例如各个发电机的出力、储能系统的充放电功率等。每个参与者的收益函数是其自身的运行成本,目标是最小化自身的运行成本。
纳什博弈的目标是找到一个纳什均衡解,即所有参与者的最佳策略组合,使得没有一个参与者可以通过单方面改变策略来获得更高的收益。
3.3 求解算法
求解纳什均衡解的方法有很多,常用的方法包括:
- 迭代法:
每个参与者轮流更新自身的策略,直到达到纳什均衡。
- 优化算法:
将纳什博弈问题转化为一个优化问题,然后使用优化算法来求解。例如,可以使用遗传算法、粒子群算法等智能优化算法。
- 数值计算方法:
使用数值计算方法来求解纳什均衡解,例如不动点迭代法。
4. 算例分析
为了验证该策略的有效性,需要构建一个多微网的算例,并进行仿真分析。算例可以包含多个微网,每个微网包含不同类型的分布式电源、储能系统和负荷。
仿真分析可以比较以下几种情况:
- 独立运行:
每个微网独立运行,不进行能源共享。
- 集中式优化调度:
所有微网作为一个整体进行优化调度。
- 基于纳什博弈的多微网共享:
采用该论文提出的基于纳什博弈的多微网共享策略。
通过比较这几种情况的运行成本、能源利用率、可再生能源消纳率等指标,可以验证该策略的优势。
5. 讨论与挑战
尽管该策略具有一定的优势,但在实际应用中仍然面临着一些挑战:
- 模型复杂度:
构建电热双层的优化调度模型需要考虑大量的设备和约束,导致模型复杂度较高,求解难度较大。
- 信息交互:
纳什博弈需要各个微网之间进行信息交互,例如共享运行成本、负荷需求等信息。然而,信息交互可能会暴露各个微网的商业机密,因此需要设计安全的信息交互机制。
- 算法收敛性:
求解纳什均衡解的算法可能无法保证收敛到全局最优解,而是收敛到局部最优解。因此需要选择合适的求解算法,并进行充分的收敛性分析。
- 不确定性:
实际运行中存在大量的不确定性因素,例如可再生能源的波动性、负荷需求的不确定性等。因此需要考虑不确定性因素的影响,并设计鲁棒的优化调度策略。
6. 结论
本文旨在复现并深入研究一篇发表于SCI期刊的论文,该论文提出了一种基于纳什博弈的多微网主体电热双层共享策略。通过对该策略的理论推导、模型构建以及算例分析,可以验证其在提高能源利用率、降低运行成本和促进可再生能源消纳等方面的优势。然而,该策略在实际应用中仍然面临着一些挑战,例如模型复杂度、信息交互、算法收敛性等。
未来的研究可以重点关注以下几个方面:
- 简化模型:
在保证精度的前提下,尽量简化模型,降低求解难度。
- 安全信息交互:
设计安全的信息交互机制,保护各个微网的商业机密。
- 鲁棒优化:
考虑不确定性因素的影响,设计鲁棒的优化调度策略。
- 在线优化:
研究在线优化算法,实现多微网的实时协调控制。
⛳️ 运行结果
🔗 参考文献
[1] 杨冬锋,王轶琳,杨士慧,等.基于混合博弈的多微网-共享储能双层能量交易策略[J].高电压技术, 2024, 50(4):1392-1402.
[2] 能源动力(电气工程).基于合作博弈的多维网运行优化策略研究[D].山东理工大学,2023.
[3] 陆杨.基于合作博弈的多能源微网集群能源交易策略研究[D].沈阳工业大学,2022.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇