交通物流模型 | 车辆跟驰行为建模

车辆跟驰行为建模通过数据驱动模型得到提升,新建立的FollowNet基准数据集包含80K个跟驰事件,促进了模型比较。研究发现,基于深度确定性策略梯度(DDPG)的模型在间距MSE和碰撞率上优于传统智能驾驶员模型(IDM)和gazis-herman-rothery(GHR)模型,为交通物流领域的跟驰模型发展提供了重要参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


车辆跟驰是指跟随车辆通过调整加速度来保持与前车的安全距离的控制过程。最近,数据驱动模型蓬勃发展,可以通过真实驾驶数据集更准确地建模汽车跟随。尽管已经有若干个可用的公共数据集,但它们的格式并不总是一致的,这使得确定最先进的模型以及新模型与现有模型相比表现如何具有挑战性。相比之下,图像识别和目标检测等研究领域有imagenet、Microsoft COCO和KITTI等基准数据集。为了解决这一差距并促进微观交通流建模的发展,作者建立了一个用于跟驰行为建模的公共基准数据集。该基准包括使用相同标准从五个公共驾驶数据集中提取的超过80K个跟驰事件。这些活动涵盖了不同的情况,包括不同的道路类型,不同的天气条件,以及自动驾驶汽车的混合交通流量。此外,为了概述汽车跟随建模的当前进展,作者使用基准实现并测试了具有代表性的基线模型。

结果表明,与传统的智能驾驶员模型(IDM)和gazis - herman - rothery (GHR)模型相比,基于深度确定性策略梯度(DDPG)的模型具有较低的间距MSE,与全连接神经网络(NN)和长短期记忆(LSTM)模型相比,在大多数数据集中具有较小的碰撞率。建立的基准将为研究人员提供一致的数据格式和指标,用于交叉比较不同的跟驰模型,促进更准确模型的开发。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab建模攻城师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值