Krauss模型
Krauss model是安全距离类模型。安全距离模型基于这样的假设:即驾驶人期望与前导车保持安全车头间距,当前导车突然制动时,驾驶人能够有时间做出反应并减速停车,以避免发生碰撞。这类模型大多是基于牛顿运动学公式建立,由于模型形式简单、能够避免车辆碰撞,因而在交通仿真软件中广泛应用。
假设前车(leader)与后车(follower)之间的车距为:
g
=
x
l
−
x
f
−
l
g = {x_l} - {x_f} - l
g=xl−xf−l
其中l为车身长度。如果要求极限情况,即要求后车(follower)在前车(leader)急刹车的情况下也不相撞,需要满足:
L
(
v
f
)
+
v
f
τ
<
L
(
v
l
)
+
g
L({v_f}) + {v_f}\tau < L({v_l}) + g
L(vf)+vfτ<L(vl)+g
其中:
v
f
v_f
vf——后车的速度,即需要计算的量
v
l
v_l
vl——前车的速度
L
(
v
f
)
L(v_f)
L(vf)——后车的刹车距离
L
(
v
l
)
L(v_l)
L(vl)——前车的刹车距离
τ
\tau
τ——驾驶员的反应时间
g
g
g——车间距
为了计算
v
f
v_f
vf,需要给出速度与刹车距离的函数表达式
L
(
v
f
)
L(v_f)
L(vf)和
L
(
v
l
)
L(v_l)
L(vl)。
L
(
⋅
)
L(·)
L(⋅)在
v
‾
=
(
v
f
+
v
l
)
/
2
\overline v =(v_f+v_l)/2
v=(vf+vl)/2处的泰勒展开可以近似代替
L
(
⋅
)
L(·)
L(⋅)函数,
L
(
⋅
)
L(·)
L(⋅)对
v
‾
\overline v
v求一阶导即为时间。
L
′
(
v
)
=
v
b
(
v
)
{L^\prime }(v){\rm{ = }}{v \over {b(v)}}
L′(v)=b(v)v
L
′
(
v
‾
)
v
f
+
v
f
τ
<
L
′
(
v
‾
)
v
l
+
g
{L^\prime }(\overline v ){v_f} + {v_f}\tau < {L^\prime }(\overline v ){v_l} + g
L′(v)vf+vfτ<L′(v)vl+g
v
f
(
L
′
(
v
‾
)
+
τ
)
<
L
′
(
v
‾
)
v
l
+
g
{v_f}({L^\prime }(\overline v ) + \tau ) < {L^\prime }(\overline v ){v_l} + g
vf(L′(v)+τ)<L′(v)vl+g
v
f
<
L
′
(
v
‾
)
v
l
+
g
(
L
′
(
v
‾
)
+
τ
)
{v_f} < {{{L^\prime }(\overline v ){v_l} + g} \over {({L^\prime }(\overline v ) + \tau )}}
vf<(L′(v)+τ)L′(v)vl+g
v
f
<
(
L
′
(
v
‾
)
+
τ
)
v
l
−
v
l
τ
+
g
(
L
′
(
v
‾
)
+
τ
)
{v_f} < {{({L^\prime }(\overline v ) + \tau ){v_l} - {v_l}\tau + g} \over {({L^\prime }(\overline v ) + \tau )}}
vf<(L′(v)+τ)(L′(v)+τ)vl−vlτ+g
v
f
<
v
l
+
g
−
v
l
τ
L
′
(
v
‾
)
+
τ
{v_f} < {v_l} + {{g - {v_l}\tau } \over {{L^\prime }(\overline v ) + \tau }}
vf<vl+L′(v)+τg−vlτ
因为泰勒余项被舍弃所以
L
′
(
v
‾
)
L^\prime (\overline v )
L′(v)一定大于
(
v
f
+
v
l
)
/
2
a
(v_f +v_l)/2a
(vf+vl)/2a,则取等号后一定为后车的安全速度。
v
s
a
f
e
=
v
l
+
g
−
v
l
τ
(
v
f
+
v
l
)
/
2
a
+
τ
{v_{safe}} = {v_l} + {{g - {v_l}\tau } \over {({v_f} + {v_l})/2a + \tau }}
vsafe=vl+(vf+vl)/2a+τg−vlτ
再根据仿真步长或者规划周期即可确定车速的更新策略。
IDM模型
基于一些假设给定一个数学描述自车的加速度:
v
˙
=
a
[
1
−
(
v
v
0
)
δ
−
(
s
∗
(
v
,
Δ
v
)
s
)
2
]
{\rm{\dot v}} = a[1 - {({v \over {{v_0}}})^\delta } - {({{{s^*}(v,\Delta v)} \over s})^2}]
v˙=a[1−(v0v)δ−(ss∗(v,Δv))2]
其中
a
a
a为自车的最大加速度,
v
v
v为自车当前的车速,
v
0
v_0
v0为自车的期望车速,
δ
\delta
δ为加速度指数,
Δ
v
\Delta v
Δv为自车与前车的速度差,
s
s
s为当前自车与前车的车距,
s
∗
(
v
,
Δ
v
)
s^*(v,\Delta v)
s∗(v,Δv)为期望的跟车距离。第二项用来衡量当前车速与期望车速的差距,促进车辆加速,第三项衡量当前车距与期望车距的差距,促进车辆制动。
情况一:当跟车距离s很大时,最后一项趋近于0
v
˙
=
a
[
1
−
(
v
v
0
)
δ
]
{\rm{\dot v}} = a[1 - {({v \over {{v_0}}})^\delta }]
v˙=a[1−(v0v)δ]
自车加速度与其速度负相关,速度增大,加速度减小。
情况二:平衡地交通,自车与前车保持一个平衡跟车距离
s
s
s,
v
˙
≈
Δ
v
≈
0
\dot v \approx \Delta v \approx 0
v˙≈Δv≈0。
期望车距
s
∗
(
v
,
Δ
v
)
=
s
0
+
max
(
0
,
v
T
+
v
Δ
v
2
a
b
)
{s^*}(v,\Delta v) = {{\rm{s}}_{\rm{0}}} + \max (0,vT + {{v\Delta v} \over {2\sqrt {ab} }})
s∗(v,Δv)=s0+max(0,vT+2abvΔv)
b
b
b为舒适减速度,则在该情况下
s
∗
(
v
,
Δ
v
)
=
s
0
+
v
T
{s^*}(v,\Delta v) = {{\rm{s}}_{\rm{0}}} + vT
s∗(v,Δv)=s0+vT
a
[
1
−
(
v
v
0
)
δ
−
(
s
∗
(
v
,
Δ
v
)
s
)
2
]
=
0
a[1 - {({v \over {{v_0}}})^\delta } - {({{{s^*}(v,\Delta v)} \over s})^2}] = 0
a[1−(v0v)δ−(ss∗(v,Δv))2]=0
1
−
(
v
v
0
)
δ
−
(
s
0
+
v
T
s
)
2
=
0
1 - {({v \over {{v_0}}})^\delta } - {({{{{\rm{s}}_{\rm{0}}}{\rm{ + vT}}} \over s})^2} = 0
1−(v0v)δ−(ss0+vT)2=0
(
s
0
+
v
T
s
)
=
1
−
(
v
v
0
)
δ
({{{{\rm{s}}_{\rm{0}}}{\rm{ + vT}}} \over s}) = \sqrt {1 - {{({v \over {{v_0}}})}^\delta }}
(ss0+vT)=1−(v0v)δ
s
=
s
0
+
v
T
1
−
(
v
v
0
)
δ
s = {{{{\rm{s}}_{\rm{0}}}{\rm{ + vT}}} \over {\sqrt {1 - {{({v \over {{v_0}}})}^\delta }} }}
s=1−(v0v)δs0+vT
因此,在这种情况,车将根据车流量的密度来更新速度。
情况三:当跟车距离s很小时,要紧急制动,忽略数学描述的第二项。
v
˙
=
−
a
(
s
∗
s
)
2
=
−
a
v
2
(
Δ
v
)
2
4
a
b
s
2
=
−
(
v
2
2
s
)
2
1
b
\dot v = - a{({{s*} \over s})^2} = - {{a{v^2}{{(\Delta v)}^2}} \over {4ab{s^2}}} = - {({{{v^2}} \over {2s}})^2}{1 \over b}
v˙=−a(ss∗)2=−4abs2av2(Δv)2=−(2sv2)2b1
b
k
i
n
=
v
2
2
s
b_{kin} = {{{v^2}} \over {2s}}
bkin=2sv2
v
˙
=
−
b
k
i
n
2
b
\dot v = - {{b_{kin}^2} \over b}
v˙=−bbkin2
如果
b
k
i
n
>
b
{b_{kin}} > b
bkin>b,减速度必须短暂超过最大舒适减速度才能避免碰撞。
如果
b
k
i
n
<
b
{b_{kin}} < b
bkin<b,车辆以小于最大舒适减速度刹车就可以避免碰撞。
MOBIL模型
MOBIL模型的全称为minimize overall braking induced by lane change,即最小化换道引起的整体制动。
RSS模型
RSS模型的全称为responsibility-sensitive safety,即责任敏感安全模型。
Newell模型
Newell提出的一种适用于高速公路上的跟驰模型。
Wiedemann模型
首先通过一系列阈值来区分不同的车辆驾驶行为,然后使用当前车辆与前车的距离和相对速度来判断车辆属于哪种驾驶状态,最后根据该状态下加速度公式求出加速度。该模型充分考虑了驾驶员的生理、心理因素对驾驶行为的影响和制约,及由此而产生的不同驾驶行为,从建模方法上更接近实际情况,最大限度上仿真实际车辆的驾驶行为。其综合考虑相对速度和车间距进行模式切换。
Bkerner模型
该模型,每个个体车辆都会进行随机加速或者减速,当车辆与前车距离接近阈值时不能有效地实施减速。车间距始终没有达到稳定值,可能导致模型产生碰撞。
PWagner模型
PWagner模型即人类行为的行动点模型。驾驶员可以在任意的时间步长随机决定是否改变当前的加速度。交通灯对 PWagner模型没有明显的约束,可能导致模型产生碰撞。