股票价格预测 | Python实现基于ARIMA和LSTM的股票预测模型(含XGBoost特征重要性衡量)

本文介绍了使用Python实现ARIMA和LSTM预测股票价格的模型,结合XGBoost计算特征重要性。通过特征工程创建技术指标,包括指数移动平均线、移动平均线和动量等。ARIMA模型选择了(p=2, d=0, q=3)参数。LSTM模型展示了解决长期依赖问题的能力,通过多个门控机制进行预测。最终通过比较不同模型的MAE,评估预测性能。" 136738622,1291382,GraphEdit:大型语言模型在图结构学习中的应用,"['自然语言处理', '图结构学习', '语言模型', '人工智能']
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

文章概述

Python实现基于ARIMA和LSTM的股票预测模型(Stock-Prediction)

  • Data Extraction
  • Formatting data for time series
  • Feature engineering(Feature Importance using XGBoost)
  • ARIMA model
  • LS
要创建一个基于XGBoost的模型来预测股票价格涨跌是否超过1%,你需要先准备数据、选择特征、训练模型并进行预测。以下是一个简化的Python示例,使用pandasxgboost库: ```python # 导入所需库 import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import xgboost as xgb from sklearn.preprocessing import LabelEncoder # 假设你有一个包历史股价数据的数据frame 'stock_data' data = ... # 股票数据清洗后格式化 # 准备特征(假设我们选择收盘价、开盘价、最高价、最低价等作为特征) features = ['Close', 'Open', 'High', 'Low'] target = 'ChangePercentage' # 数据预处理 stock_data['ChangePercentage'] = stock_data[target].apply(lambda x: abs(x) / 100 - 1) # 计算涨跌幅百分比 stock_data['direction'] = np.where(stock_data['ChangePercentage'] > 0.01, 'Up', 'Down') # 标记涨跌 # 将标签转换为数字编码 le = LabelEncoder() stock_data['direction_encoded'] = le.fit_transform(stock_data['direction']) # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(stock_data[features], stock_data['direction_encoded'], test_size=0.2, random_state=42) # 创建DMatrix格式数据 dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) # 设置XGBoost模型参数 params = { 'objective': 'binary:logistic', # 使用二分类模型 'eval_metric': 'logloss', # 评估指标 'eta': 0.1, # 学习率 'max_depth': 5, # 深度 } # 训练模型 model = xgb.train(params, dtrain, num_boost_round=100, evals=[(dtest, 'test')]) # 预测新数据 new_data = ... # 新一天的股票数据 prediction_df = pd.DataFrame(new_data[features]) prediction_df['ChangePercentage'] = new_data[target] prediction_df['direction_encoded'] = model.predict(xgb.DMatrix(prediction_df[features])) # 解码预测结果 prediction_df['direction'] = prediction_df['direction_encoded'].map(le.inverse_transform) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法如诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值