股票价格预测 | Python实现基于ARIMA和LSTM的股票预测模型(含XGBoost特征重要性衡量)

本文介绍了使用Python实现ARIMA和LSTM预测股票价格的模型,结合XGBoost计算特征重要性。通过特征工程创建技术指标,包括指数移动平均线、移动平均线和动量等。ARIMA模型选择了(p=2, d=0, q=3)参数。LSTM模型展示了解决长期依赖问题的能力,通过多个门控机制进行预测。最终通过比较不同模型的MAE,评估预测性能。" 136738622,1291382,GraphEdit:大型语言模型在图结构学习中的应用,"['自然语言处理', '图结构学习', '语言模型', '人工智能']
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

文章概述

Python实现基于ARIMA和LSTM的股票预测模型(Stock-Prediction)

  • Data Extraction
  • Formatting data for time series
  • Feature engineering(Feature Importance using XGBoost)
  • ARIMA model
  • LS
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法如诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值