
本文介绍了使用Python实现ARIMA和LSTM预测股票价格的模型,结合XGBoost计算特征重要性。通过特征工程创建技术指标,包括指数移动平均线、移动平均线和动量等。ARIMA模型选择了(p=2, d=0, q=3)参数。LSTM模型展示了解决长期依赖问题的能力,通过多个门控机制进行预测。最终通过比较不同模型的MAE,评估预测性能。"
136738622,1291382,GraphEdit:大型语言模型在图结构学习中的应用,"['自然语言处理', '图结构学习', '语言模型', '人工智能']