目录 0 前言 1 NLP是什么 2 LLMs是什么 3 NLP和LLMs的发展 3.1 单词和句子向量 3.2 无监督预训练 3.3 预训练的Transformer 3.4 分布式训练的LLMs 4 NLP的应用 4.1 序列分类 4.2 两两序列分类 4.3 单词标注 4.4 Seq2Seq 5 LLMs的应用模型 5.1 GPT 5.2 BERT 5.3 XLNet 5.4 T5 6 LLMs的影响 7 LLMs的挑战 7.1 数据规模庞大 7.2 计算资源消耗巨大 7.3 微调过程复杂 7.4 偏差和不良输出 7.5 缺乏时效性 7.6 幻觉问题 8 LLMs的研究方向 8.1 加强偏差缓解 8.2 效率优化 8.3 动态上下文处理 8.4 持续学习 8.5 可解释的AI