时滞系统:输入输出不仅仅与当前时刻有关,还与之前时刻有关。
处理时变时延常见两种方法:
1、输入输出法:将原有时变时延系统转化为带有扰动的。(对应:越缓慢变化,保守性越小)
2、李雅普诺夫泛函法:基于能量概念来确定系统的稳定性(无需求解运动方程)
研究目的在于使系统达到稳定性,下面给出系统稳定性的判定
系统稳定性:在外部扰动作用停止后,系统回复初始状态的性能。
针对一个系统不仅仅要求达到稳定性,还需要降低系统的保守性。
保守性通俗理解就是,两个人通信,判定系统达到稳定性时间容错区间越大越好,越大说明通信的延迟落在我预估的区间概率越高,越有可能趋于稳定状态。
针对系统的GAS分析,即寻找一个时滞上界,保证系统对所有时滞都是全局稳定的。
下面运用李雅普诺夫泛函进行分析,首先补充李雅普诺夫泛函相关定义:
下面给出稳定性示意图:
关于李雅普诺夫泛函稳定性的定义:
综上,我们需要整体函数是正定的,函数的导数是负定的,即可证明系统是稳定的。
针对文献学习,下面总结自己看过的几个公式:
以上是个人学习资料小结,若对你有帮助请别忘记点个赞。