时滞系统稳定性-李雅普诺夫泛函法

时滞系统:输入输出不仅仅与当前时刻有关,还与之前时刻有关。

处理时变时延常见两种方法:

        1、输入输出法:将原有时变时延系统转化为带有扰动的。(对应:越缓慢变化,保守性越小)

        2、李雅普诺夫泛函法:基于能量概念来确定系统的稳定性(无需求解运动方程)

研究目的在于使系统达到稳定性,下面给出系统稳定性的判定

        系统稳定性:在外部扰动作用停止后,系统回复初始状态的性能。

针对一个系统不仅仅要求达到稳定性,还需要降低系统的保守性。

        保守性通俗理解就是,两个人通信,判定系统达到稳定性时间容错区间越大越好,越大说明通信的延迟落在我预估的区间概率越高,越有可能趋于稳定状态。

        针对系统的GAS分析,即寻找一个时滞上界,保证系统对所有时滞都是全局稳定的。

下面运用李雅普诺夫泛函进行分析,首先补充李雅普诺夫泛函相关定义:

        

下面给出稳定性示意图:

关于李雅普诺夫泛函稳定性的定义:

综上,我们需要整体函数是正定的,函数的导数是负定的,即可证明系统是稳定的。

针对文献学习,下面总结自己看过的几个公式:

以上是个人学习资料小结,若对你有帮助请别忘记点个赞。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值