机器学习每周挑战——基于统计性分析和回归的球员薪资预测

 

背景描述

本数据集的工资数据截至 2023-24 赛季夏季转会窗口。数据提取自游戏《Football Manager 2024》,包含 40,000+ 名球员的数据。

FM24 是一款深受欢迎的足球模拟经营游戏。玩家将扮演一位足球经理,负责经营一支足球俱乐部,通过合理的人员调整、战术布置和训练安排,带领球队取得胜利。

数据说明

  • data_raw.csv
字段说明
Name球员名字
Club俱乐部
Division联赛
Based联赛举办国
Nat国籍
EU National是否为欧洲国家
Caps出场次数
AT Apps所有出场时间
Position位置
Age年龄
CR影响力(0-10000)
Begins合同开始日期
Expires合同截止日期
Last Club上一家俱乐部
Last Trans. Fee转会费
Salary工资
  • data_cleaned.csv
字段说明
Is_top_5_League是否在在五大联赛效力
Based_rich_nation球员生活的国家是否富裕
Is_top_ranked_nation球员所代表的国家是否在国际足联世界排名中名列前茅
EU_National是否为欧洲国家
Caps出场次数
Apps所有出场时间
Age年龄
Reputation影响力(0-10000)
Is_top_prev_club根据欧足联 10 年系数,前俱乐部球员是否曾在顶级俱乐部效力过
Last_Transfer_Fee转会费
Salary工资
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
from scipy import stats
from scipy.stats import kstest,ttest_ind,spearmanr,f_oneway
from sklearn.preprocessing import StandardScaler
from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.stats.stattools import durbin_watson
from sklearn.model_selection import train_test_split
import statsmodels.api as sm
from statsmodels.stats.diagnostic import het_breuschpagan
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
from sklearn.linear_model import LinearRegression
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['font.family'] = ['Microsoft YaHei']

 首先我们先导入用到的库,其次设置绘图时的字体为微软雅黑,防止绘图时中文出现乱码情况

df1 = pd.read_csv('D:/每周挑战/data_raw.csv')
df2 = pd.read_csv('D:/每周挑战/data_cleaned.csv')
# print(df1.info())
# print('//')
# print(df2.info())

从数据上来看df1属于未处理的数据,而df2属于清洗后的数据,因此我们分析时,只需分析清洗后的数据即可

# 虽然数据里的特征全是数值型的,但是由于含义不同,我们可以将其分为连续的和不连续的
feature1 = ['Is_top_5_League','Based_rich_nation','Is_top_ranked_nation','EU_National','Is_top_prev_club']
# for f in feature1:
#     data = df2[f].value_counts().reset_index()
#     plt.figure(figsize=(10,8))
#     sns.barplot(data,x='index',y=f)

# plt.show() # 如果你的运行环境是pycharm,如果环境是jupyter notebook不建议这样写,因为这样可能导致图像无法一起显示

fig,axes = plt.subplots(3,2,figsize=(16,15))
for i,f in enumerate(feature1):
    data = df2[f].value_counts().reset_index()
    fig = sns.barplot(data,x='index',y=f,ax=axes[i//2,i%2])
    fig.set_title(f)

feature2 = ['Caps','Apps','Age','Reputation','Last_Transfer_Fee','Salary']

fig,axes = plt.subplots(3,2,figsize=(16,15))
for i,f in enumerate(feature2):
    data = df2[f]
    sns.histplot(data,ax = axes[i//2,i%2],kde=True)
#     fig.set_title(f)

 

plt.figure(figsize=(10,8))
a = df2['Last_Transfer_Fee'].reset_index()
sns.scatterplot(a,x='index',y='Last_Transfer_Fee')
plt.title('转会费分布情况')
plt.show()
plt.figure(figsize=(10,8))
b = df2['Salary'].reset_index()
sns.scatterplot(b,x='index',y='Salary')
plt.title('薪资分布情况')
plt.show()

 

 

接下来,我们可以对各个特征之间的相关性来进行判断 对于相关性的判断我们可以使用热力图,皮尔逊相关系数,斯皮尔曼相关系数等, 使用皮尔逊相关系数有一个硬性条件就是数据的分布特征必须符合正态分布,因此我们先对连续型数值数据进行KS检验

feature3 = ['Caps','Apps','Age','Reputation','Salary']   # 从上面图表可以看出转回费全是0,因此我们将其剔除
ks_result = {}
for f in feature3:
    ks_stats,p_value = stats.kstest(df2[f],'norm',args=(df2[f].mean(),df2[f].std()))
    print(f'{f}:KS statistic:{ks_stats},P-value:{p_value}.')

 

Caps:KS statistic:0.35329526602141725,P-value:0.0.
Apps:KS statistic:0.15802018198153772,P-value:0.0.
Age:KS statistic:0.08143107877963102,P-value:9.775470716540734e-236.
Reputation:KS statistic:0.03507042116880876,P-value:5.033392897827099e-44.
Salary:KS statistic:0.43688173742912745,P-value:0.0.

从这里可以看出P值没有高于0.05的,因此我们可以认为这些数据不符合正态分布,因此我们对相关性的分析可以使用斯皮尔曼

results = []
# 对连续型数据我们采用斯皮尔曼相关系数来判断其相关性
continuous_features = ['Caps','Apps','Age','Reputation','Salary']
for feature in continuous_features:
    corr,p_value = spearmanr(df2[feature],df2['Salary'])
    results.append({'Feature': feature, 'Spearman Corr': corr, 't-stat': None, 'ANOVA': None, 'p-value': p_value})
    
# 对二分类数据我们采用t检验来判断其相关性
categorical_features = ['Is_top_5_League','Based_rich_nation','EU_National','Is_top_prev_club']
for feature in categorical_features:
    group0 = df2[df2[feature] == 0]['Salary']
    group1 = df2[df2[feature] == 1]['Salary']
    t_stat, p_value = ttest_ind(group0, group1)
    results.append({'Feature': feature, 'Spearman Corr': None, 't-stat': t_stat, 'ANOVA': None, 'p-value': p_value})

    
# 对多分类数据我们采用方差分析来判断
anova_features = 'Is_top_ranked_nation'
group = [df2[df2[anova_features] == cat]['Salary'] for cat in sorted(df2[anova_features].unique())]
anova_stats,p_vlaue = f_oneway(*group)
results.append({'Feature':anova_features, 'Spearman Corr': None, 't-stat': None, 'ANOVA': anova_stats, 'p-value': p_value})

df_results = pd.DataFrame(results)
df_results
FeatureSpearman Corrt-statANOVAp-value
0Caps0.089277NaNNaN5.846491e-73
1Apps0.517847NaNNaN0.000000e+00
2Age0.249744NaNNaN0.000000e+00
3Reputation0.833983NaNNaN0.000000e+00
4Salary1.000000NaNNaN0.000000e+00
5Is_top_5_LeagueNaN-35.837645NaN5.814363e-277
6Based_rich_nationNaN-14.167243NaN1.873582e-45
7EU_NationalNaN-2.128449NaN3.330584e-02
8Is_top_prev_clubNaN-33.013365NaN6.765112e-236
9Is_top_ranked_nationNaNNaN34.9306316.765112e-236

出场次数与球员工资之间的斯皮尔曼相关系数为 0.089,表示两者之间有很弱的正相关性。 所有出场时间与球员工资之间的斯皮尔曼相关系数为 0.518,表明有中等程度的正相关性。 年龄与球员工资之间的斯皮尔曼相关系数为 0.250,显示两者间有较弱的正相关性。 影响力与球员工资之间的斯皮尔曼相关系数为 0.834,表明两者之间有较强的正相关性。 Is_top_5_League: t检验的t值为 -35.84,p值非常小,表明是否在在五大联赛效力与球员工资存在显著差异。 Based_rich_nation: t检验的t值为 -14.17,p值非常小,表示球员生活的国家是否富裕与球员工资之间存在显著差异。 EU_National: t检验的t值为 -2.13,p值为0.033,显示是否为欧洲国家与球员工资之间的差异在统计学上显著。 Is_top_prev_club: t检验的t值为 -33.01,p值非常小,显示前俱乐部球员是否曾在顶级俱乐部效力过与球员工资之间有显著差异。 Is_top_ranked_nation: 方差分析的F值为 34.93,p值非常小,表明球员所代表的国家是否在国际足联世界排名中名列前茅在不同组别中对球员工资有显著的影响。

模型的建立,由于部分数据跨度较大,因此我们先对数据进行标准化,之后计算VIF值,确定其不存在多重共线性。 这里我们又用到了多元线性回归模型,因此步骤还是老步骤,首先对残差进行正态性,独立性,同方差性进行检验

data = df2.copy()
data = data.drop('Last_Transfer_Fee',axis=1)
feature4 = ['Caps','Apps','Age','Reputation']
scaler = StandardScaler()

data[feature4] = scaler.fit_transform(data[feature4])
    
# 由于目标值不符合正态分布,因此我们对目标值进行对数变换,使其更加接近于正态分布
data['Log_Salary'] = np.log(data['Salary'])

# 接下来我们计算各个特征的VIF值,确定其是否存在多重共线性
X = data.drop(['Salary','Log_Salary'],axis=1)
y = data['Salary']

VIF_data = pd.DataFrame()
VIF_data['feature'] = X.columns
VIF_data['VIF_values'] = [variance_inflation_factor(X.values,i) for i in range(X.shape[1])]
VIF_data
featureVIF_values
0Is_top_5_League1.391285
1Based_rich_nation3.278526
2Is_top_ranked_nation3.251428
3EU_National3.027021
4Caps1.228038
5Apps3.205145
6Age2.970727
7Reputation1.429138
8Is_top_prev_club1.081392

可以看出VIF值基本都在1-4之间,因此我们可以判断出,数据中不存在多重共线性 接下来,我们开始对数据集进行建模

data.drop('Salary',axis=1,inplace=True)

X = data.drop('Log_Salary',axis=1)
y = data['Log_Salary']

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=42)

line_model = LinearRegression()
line_model.fit(X_train,y_train)
y_pred = line_model.predict(X_train)
residuals = y_train - y_pred

DW = durbin_watson(residuals)
print('DW值:',DW)
DW值: 1.9994671572216502

这里可以看出DW值在2附近,因此我们可以看出线性回归的残差独立性是比较好的,接下来我们对残差的正态性和同方差性进行检验

# KS检验
ks_statistic,ks_pvalues = kstest((residuals - np.mean(residuals))/ np.std(residuals),'norm')
print(f'KS检验:{ks_statistic},P值:{ks_pvalues}')
KS检验:0.029053858860392467,P值:2.2584717876590108e-21
# 增加常数项到自变量矩阵中,因为线性回归模型默认包含截距
X_constant = sm.add_constant(X_train)
# Breusch-Pagan检验
bp_test = het_breuschpagan(residuals,X_constant)
labels = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value']
print(dict(zip(labels, bp_test)))
{'Lagrange multiplier statistic': 1643.1994698959277, 'p-value': 0.0, 'f-value': 193.65865696721104, 'f p-value': 0.0}

从P-value可以看出,残差并没有通过同方差性检验,因此我们就不使用多元线性回归模型来进行预测了 因此我们接下来使用随机森林来进行预测

Rtree = RandomForestRegressor()
Rtree.fit(X_train,y_train)

y_pred = Rtree.predict(X_test)
R2 = r2_score(y_test,y_pred)

print('R2系数:',R2)
R2系数: 0.7949048167355701
important_feature = Rtree.feature_importances_
feature = X.columns

sort_index = important_feature.argsort()

plt.figure(figsize=(12, 6))
plt.barh(range(len(sort_index)), important_feature[sort_index])
plt.yticks(range(len(sort_index)), [feature[i] for i in sort_index])
plt.xlabel('特征重要性')
plt.title('特征重要性分析')

plt.show()

  • 39
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《Python机器学习实战教学——基于协同过滤的电影推荐系统(超详细教学,算法分析)》是一本以协同过滤算法为基础,教授Python机器学习实战技巧的书籍。该书通过详细的教学和算法分析,帮助读者理解和运用协同过滤算法实现电影推荐系统。 协同过滤是一种根据用户历史行为和其他用户间的关系进行推荐的算法。该算法可以通过观察用户的历史观影记录和其他用户的共同观影记录,从而推断用户的个人喜好并给出个化的电影推荐。 书中首先介绍了协同过滤算法的原理和基本概念,包括用户相似度计算、基于用户的协同过滤和基于物品的协同过滤。然后,书中详细解释了如何使用Python进行数据预处理和特征工程,如数据清洗、特征选择和特征提取等。 接下来,书中介绍了协同过滤算法的具体实现过程。从构建用户-电影评分矩阵开始,通过计算用户间的相似度关系,得出用户对未观看电影的评分预测。同时,书中还讲解了基于物品的协同过滤算法,以及如何通过计算物品之间的相似度来推荐电影。 在算法实现的过程中,书中还给出了详细的代码示例和实战案例,帮助读者理解和掌握算法的具体步骤和实际应用方法。此外,书中还对算法的优化和评估做了深入讲解,帮助读者提高算法的能和推荐准确度。 总的来说,《Python机器学习实战教学——基于协同过滤的电影推荐系统(超详细教学,算法分析)》是一本深入浅出的书籍,通过清晰的教学和详细的算法分析,帮助读者理解和运用协同过滤算法实现电影推荐系统。无论是对Python机器学习的初学者还是已经有一定基础的读者,都能从中受益匪浅。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值