COMAP竞赛题目难度排名(从高到低)
1. 问题 F:网络强国?
难度等级:★★★★★
核心挑战:
- 跨国数据整合:需处理分散的全球网络犯罪数据(如攻击频率、政策有效性),数据质量参差且定义不统一。
- 政策效果量化:需结合法律文本分析与统计模型,主观性强(例如“政策有效性”如何转化为指标)。
- 跨学科要求:涉及国际关系、网络安全技术、经济学,需高度协作与领域知识。
关键难点:理论构建需避免过度简化,结果验证依赖主观解读。
2. 问题 E:为农业腾出空间
难度等级:★★★★☆
核心挑战:
- 动态生态系统建模:需模拟森林转农田后的物种交互(如蝙蝠-害虫-作物关系),涉及微分方程或系统动力学。
- 多因素耦合:农药使用、有机转型等人类决策需与自然过程(土壤退化、物种回归)动态结合。
- 数据稀缺性:历史生态数据可能不足,需依赖假设或简化。
关键难点:平衡模型复杂度与可解释性,避免过度参数化。
3. 问题 D:通往更好城市的路线图
难度等级:★★★☆☆
核心挑战:
- 交通网络建模:需构建图论模型(如节点-边网络)分析桥梁坍塌、公交线路优化等影响。
- 利益相关者冲突:需量化居民、企业、游客等需求差异,提出帕累托最优方案。
- 数据清洗:交通流量数据(如
MDOT_SHA_Annual_AADT
)可能包含噪声,需预处理。
关键难点:模型需兼顾细节(如社区连通性)与计算效率。
4. 问题 B:管理可持续旅游业
难度等级:★★★☆☆
核心挑战:
- 多目标优化:需平衡游客量(收入)、碳排放(冰川保护)、居民满意度(住房压力)。
- 动态反馈模型:税收政策、游客限流等措施需模拟长期反馈效应。
- 数据整合:需结合经济数据(如$375M收入)、环境数据(冰川退缩速率)与社会调查。
关键难点:确定权重分配(经济vs环境)的合理性,避免模型偏倚。
5. 问题 A:时间的考验——楼梯的持续磨损
难度等级:★★☆☆☆
核心挑战:
- 物理-统计模型转换:需将楼梯磨损深度/形状转化为使用频率、方向偏好(如中心磨损=单向通行)。
- 非破坏性测量设计:需提出低成本方法(如3D扫描+机器学习分类)。
- 历史数据缺失:若楼梯年龄未知,需依赖间接证据(材料来源、建筑风格)。
关键难点:简化模型需保持物理意义,避免过度依赖假设。
6. 问题 C:奥运会奖牌榜的模型
难度等级:★☆☆☆☆
核心挑战:
- 历史数据预测:需应用时间序列分析(ARIMA)、机器学习(随机森林)预测2028年奖牌数。
- “教练效应”分析:需从运动员-国家-教练关系数据中提取统计显著性(如差分法)。
- 项目关联性:需分析特定运动(如游泳vs田径)对各国奖牌的贡献度。
关键难点:数据量大但结构化清晰,方法成熟(如线性回归),结果易验证。
总结
- 最难:问题 F(政策分析+跨国数据) > 问题 E(动态生态模型) > 问题 D(交通网络优化)。
- 中等:问题 B(多目标优化) > 问题 A(物理-统计转换)。
- 最易:问题 C(数据驱动预测)。
团队适配建议: - 数据科学团队:优先选C(低难度高胜率)或D(中等难度)。
- 跨学科团队:挑战F或E(需领域专家)。
- 工程优化团队:选B或D(运筹学导向)。