基于深度学习的网络入侵检测研究综述

本文综述了基于深度学习的网络入侵检测技术,指出深度学习在处理高维数据和识别异常行为方面的优势。文章讨论了传统机器学习方法在入侵检测中的局限性,并介绍了深度学习如RNN、CNN、DBN等在入侵检测中的应用,强调了深度学习在解决数据不平衡和实时检测问题上的挑战。最后,对未来研究方向如新型数据集、迁移学习和强化学习在入侵检测中的应用进行了展望。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘     要

【目的】互联网的迅速发展给人们的生活带来了极大的便利,然而各种网络攻击行为也日益增加,网络空间面临着严重的威胁。入侵检测在防护网络攻击中发挥着关键作用。

【文献范围】近年来,深度学习方法在入侵检测领域得到了广泛应用。本文通过广泛的文献调查,选取了该领域的最新研究工作。

【方法】首先介绍了当前的网络安全形势,并总结了入侵检测系统的类型、数据集和评估方法,然后在检测技术层面,论述了基于传统机器学习方法的入侵检测和基于深度学习的入侵检测。最后,对入侵检测技术未来的研究方向进行了展望。

【结果】通过分析对比,基于深度学习方法的入侵检测系统通常具有更好的性能。

【局限】受限于获取文献的范围,没有对基于深度学习的入侵检测方法所解决的问题进行对比。

【结论】基于深度学习方法的入侵检测技术在处理高维数据、获取数据中隐藏信息、解决网络中数据不平衡问题等方面具有优势,未来在入侵检测领域会应用地越来越广泛。

关键词:网络安全;入侵检测;深度学习;机器学习

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值