题目描述
楼梯有N阶,上楼可以一步上一阶,也可以一步上二阶。
编一个程序,计算共有多少种不同的走法。
输入输出格式
输入格式:一个数字,楼梯数。
输出格式:走的方式几种。
输入样例:4
输出样例:5
说明
60% N<=50
100% N<=5000
写的时候被折磨了一个小时,最开始以为这题只考斐波那契数,想着一遍for直接过,结果只有30分,一查才发现1000号的斐波那契数就已经大的无法想象了。于是想到高精加法,写起来也不会很麻烦,相比较一般的高精度加法,我们在这里需要开一个二维数组a[n][m],n来记录楼梯阶数,m来储存总方法数的每一位。
代码如下:
#include<bits/stdc++.h> //万能头
using namespace std;
int a[6000][5000],len=1;
void jiafa(int m)
{
for(int i=1;i<=len;i++)
a[m][i]=a[m-1][i]+a[m-2][i]; //斐波那契数列递推公式
for(int i=1;i<=len;i++) //高精度加法
{
if(a[m][i]>=10) //如果该数位大于等于10则进位
{
a[m][i+1]+=a[m][i]/10;
a[m][i]%=10;
if(a[m][len+1]) //如果进位后方法数不为0则位数加1
len++;
}
}
}
int main()
{
int n;
scanf("%d",&n);
a[1][1]=1;
a[2][1]=2;
for(int i=3;i<=n;i++)
jiafa(i); //调用高精度加法的函数
for(int i=len;i>=1;i--) //倒序输出
printf("%d",a[n][i]);
return 0;
}
高精度加法作为入门算法,其实难度并不大,总之算法学习任重道远。
寒假打卡耶比!