ATSS论文阅读笔记

focs与retinanet

(1)正负样本的定义方式不同。 RetinaNet根据IOU来选择正负样本,FCOS则利用空间和尺度约束来选择样本。  

RetinaNet利用IoU将不同金字塔层次的锚盒分成正负两部分。首先将每个物体的最佳锚盒和IoU > θp标记为正,然后将IoU < θn的锚盒视为负,最后在训练中忽略其他锚盒。

如图1(b)所示,FCOS使用空间和尺度约束从不同的金字塔层划分锚点。它首先将地面真值框内的定位点作为候选正样本,然后根据每个金字塔第3级定义的尺度范围从候选中选择最终的正样本,最后那些未被选择的定位点为负样本。

 如图1所示,FCOS首先使用空间约束来寻找空间维度上的候选正样本,然后使用尺度约束来选择尺度维度上的最终正样本。相反,RetinaNet利用IoU直接同时选择空间和尺度维度上的最终正样本。

(2)回归状态:RetinaNet通过回归矩形框的偏移量2个角点偏置进行预测 框位置和大小,而FCOS是基于中心点预测四条边和中心点的距离进行预测 框位置和大小。

atss:利用物体的中心点或区域来定义正数,然后预测从正数到物体边界的四个距离。我们把这种无锚检测器称为基于中心的方法

基于锚和无锚检测器的本质区别实际上是如何定义正和负训练样本。

•提出一种自适应训练样本选择,根据对象的统计特征自动选择正、负训练样本。

•演示在图像的每个位置平铺多个锚点来检测对象是一个无用的操作。

•在MS COCO上实现最先进的性能,而不引入任何额外的开销。

在推理阶段,采用与训练阶段相同的方法调整输入图像的大小,然后通过整个网络转发,以输出带有预测类的预测包围盒。然后,我们利用预设的评分0.05过滤出大量的背景包围盒,然后输出每个特征金字塔的前1000个检测结果。最后,应用非最大抑制(NMS)与每个类的IoU阈值0.6来生成每个图像的最终前100个自信检测。

基于锚点的检测器(32.5%)和无锚点检测器(37.8%)之间的部分AP差距源于FCOS中提出或使用的一些通用改进,如在头部中添加GroupNorm[62],使用GIoU[48]回归损失函数,限制地面真值盒[56]中的正样本,引入中心分支[56],并为每层特征金字塔添加一个可训练标量[56]。这些改进也可以应用于基于锚的检测器,因此它们不是基于锚和无锚方法的本质区别。我们将它们逐个应用到RetinaNet (#A=1),以排除这些实现上的不一致。

在应用了这些通用的改进之后,基于锚的RetinaNet (#A=1)和无锚的FCOS之间只有两个区别。一是关于检测中的分类子任务,即如何定义正样本和负样本。另一个是关于回归子任务,即从一个锚框或锚点开始的回归。

RetinaNet利用IoU将不同金字塔层次的锚盒分成正负两部分。首先将每个物体的最佳锚盒和IoU > θp标记为正,然后将IoU < θn的锚盒视为负,最后在训练中忽略其他锚盒。如图1(b)所示,FCOS使用空间和尺度约束从不同的金字塔层划分锚点。它首先将地面真值框内的定位点作为候选正样本,然后根据每个金字塔第3级定义的尺度范围从候选中选择最终的正样本,最后那些未被选择的定位点为负样本。

如图1所示,FCOS首先使用空间约束来寻找空间维度上的候选正数,然后使用尺度约束来选择尺度维度上的最终正数。相反,RetinaNet利用IoU直接同时选择空间和尺度维度上的最终正。

对于RetinaNet (#A=1),使用空间和尺度约束策略而不是IoU策略将AP性能从37.0%提高到37.8%。对于FCOS,如果使用IoU策略选择阳性样本,AP性能从37.8%下降到36.9%,如表2第二列所示。这些结果表明,正样本和负样本的定义是锚基和无锚检测器的本质区别。

对于正样本,RetinaNet的回归起始状态是一个方框,而FCOS是一个点。

如第3 - 6行所述,在每一层金字塔上,我们根据L2距离选取k个中心最接近g中心的锚盒。假设有L个特征金字塔层次,gt将有k × L个候选正样本。在此之后,我们计算这些候选数据和ground-truth之间的IoU,在第7行中g为Dg,其均值和标准差在第8行和第9行中分别计算为mg和vg。有了这些统计数据,这个基本事实g的IoU阈值在第10行中为tg = mg+vg。最后,我们选择这些IoU大于或等于阈值tg的候选者作为最终的正样本,在第11 - 15行。值得注意的是,我们还将正样本的中心限制在ground-truth框内,如第12行所示。此外,如果将一个锚框分配给多个ground-truth box,则会选择IoU最高的那个。剩下的是负样本。

这种正负样本选取方法能减少超参数,使预测变得稳定。

参考文献:《Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection》

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值