【Python】智能检测系统的完整代码,以灭火器检测系统为例

目录

一、运行结果页面展示

二、核心功能概览

三、使用说明

四、完整代码

五、代码分析 

1、代码结构分析

2、核心技术点解析

3、关键功能实现


一、运行结果页面展示

二、核心功能概览

1、智能检测引擎

                基于YOLOv8深度学习框架训练的专业灭火器检测模型

                支持CPU推理,兼容多种视频格式(MP4/AVI/MOV)

                实时显示检测框与置信度(可手动关闭)

2、专业数据看板

                模型验证指标展示(mAP@50、精确率、召回率等)

                实时处理统计(FPS、检测数、处理进度等)

3、智能保存系统

                自动保存模式:默认存储至预设工程目录(带时间戳命名)

                手动保存模式:可自定义保存路径与视频格式(MP4/AVI)

                智能编码器选择:自动匹配文件扩展名选择最佳编码方案

三、使用说明

1、自定义路径:

        # 修改检测系统名称

        # 修改模型路径

        # 修改默认保存地址

2、点击【导入视频】选择待检测视频文件(支持拖放)

3、通过复选框选择是否:
        显示检测置信度(默认开启)
        自动保存结果(默认开启)
4、点击【开始检测】启动处理流程

————————————————————————————————————————
可选操作:
        点击【暂停】临时中断处理
        点击【保存结果】手动指定存储路径
处理完成后:
        自动保存模式下结果存至D:/AAAAdata/.../predict/
        控制台输出最终保存路径

四、完整代码

# 导入 Tkinter 库并重命名为 TK(用于创建GUI界面)
import tkinter as tk
# 从 Tkinter 导入 ttk 组件(提供现代风格控件)和文件对话框(用于文件选择)
from tkinter import ttk, filedialog
# 导入 OpenCV 库(用于视频捕获、处理和保存)
import cv2
# 从 PIL 导入图像处理模块(用于在Tkinter显示图像)
from PIL import Image, ImageTk
# 导入 threading 模块(实现多线程防止界面冻结)
import threading
# 导入 time 模块(用于时间计算和生成时间戳)
import time
# 从 ultralytics 导入 YOLO 模型(目标检测核心算法)
from ultralytics import YOLO
# 导入 numpy 库(数值计算,OpenCV处理需要)
import numpy as np
# 导入 os 模块(处理文件路径和目录操作)
import os

class FireExtinguisherDetectorApp:
    def __init__(self, root):
        """初始化应用程序主类"""
        self.root = root
        self.root.title("灭火器检测系统 - 增强版")  # 设置窗口标题

        # ================= 模型加载部分 =================
        self.model = YOLO(r"E:\weights\best.pt")  # 加载训练好的YOLOv8模型
        self.val_metrics = self.load_validation_metrics()  # 加载模型验证指标

        # =============== 视频处理相关变量 ================
        self.video_path = ""  # 当前处理的视频文件路径
        self.cap = None  # OpenCV视频捕获对象
        self.is_playing = False  # 视频播放状态标志
        self.is_paused = False  # 视频暂停状态标志
        self.delay = 10  # 视频帧显示延迟(毫秒)

        # ================ 统计相关变量 =================
        self.total_frames = 0  # 视频总帧数
        self.total_detections = 0  # 累计检测到的灭火器总数
        self.frame_count = 0  # 已处理帧数计数器
        self.start_time = 0  # 检测开始时间戳
        self.fps = 0  # 实时计算的处理帧率

        # =============== 显示控制相关变量 ===============
        self.show_conf = tk.BooleanVar(value=True)  # 是否显示置信度的控制变量
        self.save_enabled = tk.BooleanVar(value=True)  # 是否启用自动保存的控制变量
        self.save_path = None  # 用户指定的保存路径
        self.video_writer = None  # OpenCV视频写入对象
        self.default_save_dir = "D:/AAAAdata/extinguisher2025python/runs/detect/predict/"  # 默认保存目录

        # ================ 界面初始化 ==================
        self.create_widgets()  # 创建GUI组件
        self.update_metrics_display() 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扶云云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值