【高等数学基础进阶】多元函数微分学-重极限、连续、偏导数、全微分

本文深入探讨了多元函数微分学的基础概念,包括二元函数、二元函数的极限、连续性、偏导数、全微分以及它们之间的关系。通过实例解析了多元函数极限的求解方法,并讨论了连续、可导和可微性的条件。此外,还讲解了偏导数的几何意义、高阶偏导数和全微分的定义,以及多元函数连续性的性质。最后,通过典型例题展示了如何判断函数在特定点的连续性和偏导数的存在性。
摘要由CSDN通过智能技术生成

二元函数

定义:设 D D D是平面上的一个点集,若对每个点 P ( x , y ) ∈ D P(x,y)\in D P(x,y)D,变量 z z z按照某一对应法则 f f f有一个确定的值与之对应,则称 z z z x , y x,y x,y的二元函数,记为
z = f ( x , y ) z=f(x,y) z=f(x,y)
其中点集 D D D称为该函数的定义域, x , y x,y x,y称为自变量, z z z称为因变量,函数 f ( x , y ) f(x,y) f(x,y)的全体所构成的集合称为函数 f f f的值域,记为 f ( D ) f(D) f(D)

通常情况下,二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在几何上表示一张空间曲面

二元函数的极限

定义:设函数 f ( x , y ) f(x,y) f(x,y)在区域 D D D上有定义,点 P 0 ( x 0 , y 0 ) ∈ D P_0(x_0,y_0)\in D P0(x0,y0)D或为 D D D的边界点,如果 ∀ ξ > 0 \forall \xi>0 ξ>0,存在 ξ > 0 \xi>0 ξ>0,当 P ( x , y ) ∈ D P(x,y)\in D P(x,y)D,且 0 < ( x − x 0 ) 2 + ( y − y 0 ) 2 < ξ 0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\xi 0<(xx0)2+(yy0)2 <ξ时,都有
∣ f ( x , y ) − A ∣ < ξ |f(x,y)-A|<\xi f(x,y)A<ξ
成立,则称常数 A A A为函数 f ( x , y ) f(x,y) f(x,y) ( x , y ) → ( x 0 , y 0 ) (x,y)\to(x_0,y_0) (x,y)(x0,y0)时的极限,记为
lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A 或 lim ⁡ x → x 0 y → y 0 f ( x , y ) = A 或 lim ⁡ P → P 0 f ( P ) = A \lim_{(x,y)\to(x_0,y_0)}f(x,y)=A或\lim_{\substack{x\to x_0\\y\to y_0}}f(x,y)=A或\lim_{P\to P_0}f(P)=A (x,y)(x0,y0)limf(x,y)=Axx0yy0limf(x,y)=APP0limf(P)=A

注:

  1. 这里的极限是要求点 ( x , y ) (x,y) (x,y) D D D内以任意方式趋近于点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)时,函数 f ( x , y ) f(x,y) f(x,y)都趋近于同一确定的常数 A A A,否则该极限不存在

当一元的时候, x x x趋近于 x 0 x_{0} x0只能沿着 x x x轴趋向于 x 0 x_{0} x0,可以左边趋向、右边趋向、两边同时趋向
但是对于多元的时候,是要求 ( x , y ) (x,y) (x,y)任意方式趋向 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)。明显的,过 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)的直线有无穷多条,而且是任意方式, ( x , y ) (x,y) (x,y)还可以沿着曲线趋向 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0),沿着离散点趋向 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)。即如果按照任意方式趋向于 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0)如果极限不存在,那么极限就不存在

  1. 一元函数极限中的下列性质对多元函数仍然成立:
    • 局部有界性:若 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_{0}}f(x) xx0limf(x)存在,则 f ( x ) f(x) f(x) x 0 x_{0} x0某去心邻域有界(即局部有界)
    • 保号性:设 lim ⁡ x → x 0 f ( x ) = A > 0 \lim\limits_{x\to x_{0}}f(x)=A>0 xx0limf(x)=A>0,如果 A > 0 A>0 A>0(或 A < 0 A<0 A<0),则存在 δ > 0 \delta>0 δ>0,当 x ∈ U ˚ ( x 0 , δ ) x\in \mathring U(x_{0},\delta) xU˚(x0,δ)时, f ( x ) > 0 f(x)>0 f(x)>0(或 f ( x ) < 0 f(x)<0 f(x)<0
    • 有理运算法则:若 lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim f(x)=A,\lim g(x)=B limf(x)=A,limg(x)=B,那么
      • lim ⁡ ( f ( x ) ± g ( x ) ) = lim ⁡ f ( x ) ± lim ⁡ g ( x ) \lim (f(x)\pm g(x))=\lim f(x)\pm \lim g(x) lim(f(x)±g(x))=limf(x)±limg(x)
      • lim ⁡ ( f ( x ) ⋅ g ( x ) ) = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) \lim(f(x)\cdot g(x))=\lim f(x)\cdot \lim g(x) lim(f(x)g(x))=limf(x)limg(x)
      • lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) ( B ≠ 0 ) \lim\frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}\quad(B\ne0) limg(x)f(x)=limg(x)limf(x)(B=0)
    • 极限与无穷小的关系: lim ⁡ f ( x ) = A ⇔ f ( x ) = A + α ( x ) \lim f(x)=A\Leftrightarrow f(x)=A+\alpha(x) limf(x)=Af(x)=A+α(x),其中 lim ⁡ α ( x ) = 0 \lim \alpha(x)=0 limα(x)=0
    • 夹逼定理:若存在 N N N,当 n > N n>N n>N时, x n ≤ y n ≤ z n x_{n}\leq y_{n}\leq z_{n} xnynzn,且 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ z n = a \lim\limits_{n\to \infty}x_{n}=\lim\limits_{n\to \infty}z_{n}=a nlimxn=nlimzn=a,则 lim ⁡ n → ∞ y n = a \lim\limits_{n\to \infty}y_{n}=a nlimyn=a

多元函数没有洛必达法则

例1:求极限 lim ⁡ x → 0 y → 0 x y 2 x 2 + y 2 \begin{aligned} \lim\limits_{\substack{x\to0\\y\to0}}\frac{xy^{2}}{x^{2}+y^{2}}\end{aligned} x0y0limx2+y2xy2

对于 0 0 \frac{0}{0} 00初步判断,如果上面次数高极限为 0 0 0,如果下面次数高极限为无穷,如果上下次数一样极限不存在

0 ≤ ∣ x y 2 x 2 + y 2 ∣ ≤ ∣ x ∣ → 0 0 \leq \left|\frac{xy^{2}}{x^{2}+y^{2}}\right|\leq |x|\to 0 0 x2+y2xy2 x0
因此极限为 0 0 0

初步判断后如果判断为 0 0 0,常用方法为取绝对值,用夹逼
此处需要条件
f ( x ) → 0 ⇔ ∣ f ( x ) ∣ → 0 f(x)\to 0 \Leftrightarrow |f(x)| \to 0 f(x)0f(x)0
用极限的定义可以证明,
对于 x → x 0 , f ( x ) → 0 x\to x_{0},f(x)\to0 xx0,f(x)0,有 ∀ ξ > 0 , ∃ δ \forall \xi >0,\exists \delta ξ>0,δ,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|<\delta 0<xx0<δ时,有
∣ f ( x ) − 0 ∣ < ξ ∣ f ( x ) ∣ < ξ \begin{aligned}|f(x)-0|&< \xi \\|f(x)|&< \xi \end{aligned} f(x)0∣f(x)<ξ<ξ
对于 x → x 0 , ∣ f ( x ) ∣ → 0 x\to x_{0},|f(x)|\to0 xx0,f(x)0,有 ∀ ξ > 0 , ∃ δ \forall \xi >0,\exists \delta ξ>0,δ,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|<\delta 0<xx0<δ时,有
∣ ∣ f ( x ) ∣ − 0 ∣ < ξ ∣ f ( x ) ∣ < ξ \begin{aligned}||f(x)|-0|&< \xi \\|f(x)|&< \xi \end{aligned} ∣∣f(x)0∣f(x)<ξ<ξ
显然二者等价,因此推广到多元函数,有
f ( x , y ) → 0 ⇔ ∣ f ( x , y ) ∣ → 0 f(x,y)\to0 \Leftrightarrow |f(x,y)|\to 0 f(x,y)0f(x,y)0

例2:证明极限 lim ⁡ x → 0 y → 0 x y x 2 + y 2 \begin{aligned} \lim\limits_{\substack{x\to0\\y\to0}}\frac{xy}{x^{2}+y^{2}}\end{aligned} x0y0limx2+y2xy不存在

lim ⁡ x → 0 y = k x k x 2 x 2 + k 2 x 2 = k 1 + k 2 \lim\limits_{\substack{x\to 0 \\y=kx }}\frac{kx^{2}}{x^{2}+k^{2}x^{2}}=\frac{k}{1+k^{2}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值