【高等数学考研速成二重积分(第12讲)】

本文详细介绍了考研数学中二重积分的几种解题策略,包括利用性质(如不等式性质、中值定理)、对称性(普通对称性和轮换对称性)、积分次序变换以及直角坐标与极坐标的转换。强调了理解和掌握区域D和被积函数的重要性。
摘要由CSDN通过智能技术生成

题型总结

本系列内容主要探究,考研中高等数学可能出现的各种题型的详解
求二重积分时,尤其是当考研的时候,很少能直接计算出来的,一旦碰壁,可以按照下面的思路去思考:(1)能否利用性质来解题,尤其是证明题时必定用到(2)能否利用对称性或者轮换对称性来简化题目(3)变幻积分次序(4)将直角坐标系下二重积分变换成极坐标下来计算

1.利用性质来解题

二重积分的重要性质,下面简单列出比较频繁使用但人们容易忽视的几条性质:
(1)如果f(x,y)<=g(x,y),
∬ D f ( x , y ) d σ < = ∬ D g ( x , y ) d σ \iint_D{f(x,y)}{\rm d \sigma}<=\iint_D{g(x,y)}{\rm d \sigma} Df(x,y)dσ<=Dg(x,y)dσ
(2)
∣ ∬ D f ( x , y ) d σ ∣ < = ∬ D ∣ f ( x , y ) ∣ d σ |\iint_D{f(x,y)}{\rm d \sigma}|<=\iint_D{|f(x,y)}|{\rm d \sigma} Df(x,y)dσ<=Df(x,y)dσ
(3)设M,m分别是f(x,y)在有界闭区域D上的最大,最小值,则一定有下面式子成立,A为D的面积
m A < = ∬ D f ( x , y ) d σ < = M A mA<=\iint_D{f(x,y)}{\rm d \sigma}<=MA mA<=Df(x,y)dσ<=MA
(4)二重积分的中值定理,设函数f(x,y)在有界闭区域D上连续,A为D的面积,则在D上至少存在一点(x1,y1),使得
∬ D f ( x , y ) d σ = f ( x 1 , y 1 ) A \iint_D{f(x,y)}{\rm d \sigma}=f(x1,y1)A Df(x,y)dσ=f(x1,y1)A

2.利用对称性来解题

2.1普通对称性

首先理解,什么是对称性?指的是什么对称?带着问题来理解如何解题
(1)D关于y轴对称,f(x,y)函数为关于x的偶函数,那么有
∬ D f ( x , y ) d σ = 2 ∬ D 1 f ( x , y ) d σ \iint_D{f(x,y)}{\rm d \sigma}=2\iint_{D1}{f(x,y)}{\rm d \sigma} Df(x,y)dσ=2D1f(x,y)dσ
D1指y轴右侧的部分
(2)D关于y轴对称,f(x,y)函数为关于x的奇函数,那么有
∬ D f ( x , y ) d σ = 0 \iint_D{f(x,y)}{\rm d \sigma}=0 Df(x,y)dσ=0
(3)D关于x轴对称,f(x,y)函数为关于y的偶函数,那么有
∬ D f ( x , y ) d σ = 2 ∬ D 2 f ( x , y ) d σ \iint_D{f(x,y)}{\rm d \sigma}=2\iint_{D2}{f(x,y)}{\rm d \sigma} Df(x,y)dσ=2D2f(x,y)dσ
D2指x轴上侧的部分
(4)D关于x轴对称,f(x,y)函数为关于y的奇函数,那么有
∬ D f ( x , y ) d σ = 0 \iint_D{f(x,y)}{\rm d \sigma}=0 Df(x,y)dσ=0
如果D为关于原点对称又会怎样呢?

2.2轮换对称性

轮换对称性为难点也为考研常考的重点,同学们往往难以想到这条性质。轮换对称性,往往指一个方程,你将x与y交换后,答案并未发生变化,往往是x,y的定义域相同。
下面是一个例子
设区域D={(x,y)|x2+y2<=R2},计算 ∬ D x 2 a 2 + y 2 b 2 d x d y \iint_D{{x^2 \over a^2}+{y^2 \over b^2}}{\rm d x dy} Da2x2+b2y2dxdy
可以利用 I 1 = ∬ D x 2 a 2 + y 2 b 2 d x d y = ∬ D y 2 a 2 + x 2 b 2 d x d y = I 2 I1=\iint_D{{x^2 \over a^2}+{y^2 \over b^2}}{\rm d x dy}=\iint_D{{y^2 \over a^2}+{x^2 \over b^2}}{\rm d x dy}=I2 I1=Da2x2+b2y2dxdy=Da2y2+b2x2dxdy=I2
那么 2 I = I 1 + I 2 = ( 1 a 2 + 1 b 2 ) ∬ D x 2 + y 2 d x d y 2I=I1+I2=({1 \over a^2}+{1 \over b^2})\iint_D{x^2+y^2}{\rm d x dy} 2I=I1+I2=(a21+b21)Dx2+y2dxdy

3.积分次序的变换

有时候先dx,后dy比较方便,但有时候先dy,再dx更加便利,要打破定性思维,如果一个二重积分的题目,长时间算不出来,可以尝试一下。

4.极坐标与直角坐标系的相互转换

对于一个直角坐标系下的二重积分,如果出现以下信号,那么可能是让你用极坐标。
(1)看被积分函数是否为f(x2+y2),f(x/y),f(y/x)的形式。
(2)看被积函数的区域是否为圆或者圆的区域。
一般上述情况优先用极坐标。
直角坐标转换成极坐标,利用x=rcosc,y=rsinc即可,首先画出D的图形,然后判断上下限的范围。

4.总结

本章没有难点,较为基础,二重积分,笔者认为所有做题技巧,围绕着两个要素展开,一是D区域,二是被积函数,紧紧抓住两个要素的规律展开解题。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值