模型怎么处理不同尺寸的输入图像

1.有全连接层的的CNN模型

卷积能够处理不同尺寸的输入图像,但全连接层不行,因此在送入全连接层之前需将卷积层提取的特征转换为一个固定长度的特征向量。

那么如何转换?

1.1 GAP(Global Average Pooling)全局平均池化

直接代码举例:

import torch
import torch.nn as nn
from torchvision import transforms

# 定义带有全连接层和全局平均池化层的 CNN 模型
class CNNWithGlobalAvgPool(nn.Module):
    def __init__(self):
        super(CNNWithGlobalAvgPool, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, 3)
        self.conv2 = nn.Conv2d(16, 32, 3)
        self.fc = nn.Linear(32, 10)  # 假设输出类别数为 10
        self.global_avg_pool = nn.AdaptiveAvgPool2d(1)

    def forward(self, x):           #(1,3,224,224)
        x = self.conv1(x)           #(1,16,222,222)
        x = self.conv2(x)           #(1,32,220,220)
        x = self.global_avg_pool(x) #(1,32,1,1)
        x = x.view(x.size(0), -1)   #(1,32)
        x = self.fc(x)              #(1,10)
        return x

# 创建模型实例
model = CNNWithGlobalAvgPool()

image = torch.randn(1,3,224,224)

output = model(image)
print(output)

 左边为普通卷积网络提取特征num_chanels*h*w后全部展开成一维向量num_chanels*h*w,再送入到全连接层,不同尺寸的图像得到不同的一维向量,输入到全连接层的in_feature数就不同,故需要统一尺寸。

右图为GAP,直接将每个通道的所有特征取平均得到num_chanels*1的向量,这样就与输入图像尺寸无关了。

1.2 SPP(Spatial Pyramid Pooling)空间金字塔池化。其中,全局平均池化是空间金字塔池化的一种特殊形式,只使用一个池化层。

上示例代码:

import torch
import torch.nn as nn
import torch.nn.functional as F

class SpatialPyramidPooling(nn.Module):
    def __init__(self, levels=[1, 2, 4]):
        super(SpatialPyramidPooling, self).__init__()
        self.levels = levels

    def forward(self, x):
        N, C, H, W = x.size()
        output = []
        
        for level in self.levels:
            kh = H // level
            kw = W // level
            for i in range(level):
                for j in range(level):
                    h_start = i * kh
                    w_start = j * kw
                    h_end = min(h_start + kh, H)
                    w_end = min(w_start + kw, W)
                    
                    pool_feat = F.adaptive_max_pool2d(x[:, :, h_start:h_end, w_start:w_end], (1, 1))
                    output.append(pool_feat.view(N, -1))

        output = torch.cat(output, dim=1)
        
        return output

# 使用示例
spp = SpatialPyramidPooling(levels=[1, 2, 4])
input_data = torch.randn(1, 3, 32, 32)  # 输入数据大小为(1, 3, 32, 32)
output = spp(input_data)
print(output.size())

 SPP:将特征图划分成不同尺寸的子区域,如1x1、2x2、4x4等不同级别的子区域,对每个子区域进行池化操作,通常是最大池化或平均池化,将这些子区域内的特征映射转换为固定长度的向量,最后将这些向量连接在一起,形成一个具有固定维度的特征表示。

2.FCN全卷积模型

没有全连接层,故可以处理不同尺寸的输入图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值