高等数学基础篇(数二)之判断敛散性

本文介绍了判断反常积分敛散性的三种主要方法:通过定义寻找原函数、比较判断法分析无穷区间和无界函数,以及P积分法。通过实例演示了如何应用这些方法进行判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

判断反常积分敛散性的主要方法:

一、用定义找被积函数的原函数

二、比较判断法

三、P积分法

四、例题


目录

一、用定义找被积函数的原函数

二、比较判断法

三、P积分法

四、例题:


一、用定义找被积函数的原函数

这个方法换言之就是先求出积分,然后根据积分是否存在来判断敛散性;

积分存在,收敛;

积分不存在,发散;


二、比较判断法

反常积分分为两种:&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心碎烤肠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值