本篇文章将介绍一个新的改进机制——WTConv(小波卷积),并阐述如何将其应用于YOLOv11中,显著提升模型性能。YOLOv11模型相比较于前几个模型在检测精度和速度上有显著提升,但其仍然受卷积核感受野大小的限制。因此,我们引入了小波卷积模块,旨在扩大卷积的感受野并有效捕捉图像中的低频信息。其对多尺度问题和小目标问题上有很好的效果。
代码:https://github.com/tgf123/YOLOv8_improve/blob/master/YOLOv11.md
首先,我们将解析WTConv的工作原理,它通过小波变换将输入图像分解为不同的频率成分,并在每个频率