在结构裂缝像素级分割任务中,现有方法存在诸多局限。卷积神经网络(CNNs)虽具有较强的局部归纳特性,在裂缝特征提取方面有一定效果,但有限的感受野使其难以对图像中广泛的不规则依赖关系进行建模,导致分割不连续、背景噪声抑制能力弱 。Vision Transformer(ViT)及其相关方法虽能有效捕捉不规则像素依赖关系,对识别复杂裂缝纹理有帮助,但注意力计算的二次复杂度导致高内存使用和训练挑战,限制了在资源受限设备上的部署。近年来,选择性状态空间模型(SSMs)受到关注,如 Mamba 在序列建模中表现出色且计算需求低,Vision Mamba(ViM)和 VMamba 等将其扩展到视觉领域。然而,现有基于 Mamba 的方法在处理裂缝图像时仍面临挑战。裂缝区域在低对比度图像中不规则扩展,受无关区域和阴影影响,现有的 Mamba 视觉状态空间模型(VSS&#
YOLO11改进-模块-引入结构感知视觉状态空间模块SAVSS 提高对可变的目标的检测精度
于 2025-05-06 10:31:10 首次发布