YOLO12改进-模块-引入基于隐藏状态混合器的状态空间对偶HSM-SSD 用于高效捕获全局依赖

       在资源受限环境下部署神经网络时,早期研究分别利用卷积和注意力机制构建轻量级架构来捕获局部和全局依赖。随着研究发展,状态空间模型(SSM)因其在处理全局交互时具有线性计算成本优势而受到关注。Mamba 引入选择性扫描机制,后续的 Vision Mambas 将 SSM 概念扩展到视觉任务。然而,先前基于 SSM 的模型仍存在速度较慢的问题,且状态空间对偶(SSD)层的主要瓶颈在于门控操作和输出投影中的线性投影。为解决这些问题,提出 HSM-SSD,旨在降低计算成本并提高模型效率。

上面是原模型,下面是改进模型

1. HSM-SSD介绍 

        HSM-SSD 对 NC-SSD 进行了结构优化。在 NC-SSD 层中,计算过程包含线性变换、离散化、深度可分离卷积(DWConv)等操作。HSM-SSD 在计算共享全局隐藏状态 h 时,先对输入进行线性投影到隐藏状态空间,减少计算量。之后,隐藏状态混合器(HSM)直接在压缩后的隐藏状态 h 上进行通道混合操作,包括门控和输出投影,避免了在原始高维特征空间进行这些操作带来的高计算成本。这种结构调整使得 HSM-SSD 在降低计算成本的同时,能够有效捕获全局上下文信息,提升模型性能 。

      

2. YOLOv12与HSM-SSD的结合          

          HSM - SSD 与 YOLOv12 结合,借助其线性计算复杂度和全局建模能力,在提升检测精度的同时保持高效推理,尤其利于小目标和高分辨率场景。

3. HSM-SSD代码部分

https://github.com/tgf123/YOLOv8_improve/blob/master/YOLOV12.md

 4. 将HSM-SSD引入到YOLOv12中

第一: 先新建一个change_model,将下面的核心代码复制到下面这个路径当中,如下图如所示。YOLOv12\ultralytics\change_model。

            ​​​​​​ ​​​​​​​ ​​​​​​​   

第二:在task.py中导入

 ​​​      ​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​      

第三:在task.py中的模型配置部分下面代码

        ​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​   

第四:将模型配置文件复制到YOLOV12.YAMY文件中

 ​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​ 

     ​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​ ​​​​​​​​​​​​​第五:运行代码


from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

if __name__=="__main__":

    # 使用自己的YOLOv12.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO(r"E:\Part_time_job_orders\YOLO_NEW\YOLOv12_all\ultralytics\cfg\models\12\yolo12_HSMSSD.yaml")
        # .load(r'E:\Part_time_job_orders\YOLO_NEW\YOLOv12\yolo12n.pt')  # build from YAML and transfer weights

    results = model.train(data=r'E:\Part_time_job_orders\YOLO\YOLOv12\ultralytics\cfg\datasets\VOC_my.yaml',
                          epochs=300,
                          imgsz=640,
                          batch=64,
                          # cache = False,
                          # single_cls = False,  # 是否是单类别检测
                          # workers = 0,
                         # resume=r'D:/model/yolov8/runs/detect/train/weights/last.pt',
                          amp = True
                          )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值